ON THE NON-COMMUTATIVE NEUTRIX PRODUCT OF THE DISTRIBUTIONS $\delta^{(r)}(x)$ AND $x^{-s} \ln ^{m}|x|$

BRIAN FISHER, INCI EGE AND EMIN ÖZÇA \bar{G}

Abstract. It is proved that the non-commutative neutrix product of the distributions $\delta^{(r)}(x)$ and $x^{-s} \ln ^{m}|x|$ exists and

$$
\delta^{(r)}(x) \circ x^{-s} \ln ^{m}|x|=0
$$

for $r, m=0,1,2, \ldots$ and $s=1,2, \ldots$.

In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}^{\prime} be the space of distributions defined on \mathcal{D}.

We now let ρ be a function in \mathcal{D} having the following properties:
(i) $\rho(x)=0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x)=\rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) d x=1$.

Putting $\delta_{n}(x)=n \rho(n x)$ for $n=1,2, \ldots$, it follows that $\left\{\delta_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac deltafunction $\delta(x)$.

If now f is an arbitrary distribution in \mathcal{D}^{\prime}, we define

$$
f_{n}(x)=\left(f * \delta_{n}\right)(x)=\left\langle f(t), \delta_{n}(x-t)\right\rangle
$$

for $n=1,2, \ldots$. It follows that $\left\{f_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the distribution $f(x)$.

A first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].
Definition 1. Let f and g be distributions in \mathcal{D}^{\prime} for which on the interval $(a, b), f$ is the k-th derivative of a locally summable function F in $L^{p}(a, b)$ and $g^{(k)}$ is a locally summable function in $L^{q}(a, b)$ with $1 / p+1 / q=1$. Then the product $f g=g f$ of f and g is defined on the interval (a, b) by

$$
f g=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}\left[F g^{(i)}\right]^{(k-i)}
$$

[^0]The distribution $x^{-1} \ln ^{m}|x|$ is defined by

$$
x^{-1} \ln ^{m}|x|=\frac{\left(\ln ^{m+1}|x|\right)^{\prime}}{m+1}
$$

for $m=0,1,2, \ldots$ The distribution x^{-s} is then defined by

$$
x^{-s}=\frac{(-1)^{s}(\ln |x|)^{(s)}}{(s-1)!}
$$

for $s=1,2, \ldots$ and the distribution $x^{-s} \ln ^{m}|x|$ is then defined inductively by the equation

$$
\left(x^{-s+1} \ln ^{m}|x|\right)^{\prime}=-(s-1) x^{-s} \ln ^{m}|x|+m x^{-s} \ln ^{m-1}|x|
$$

for $s, m=0,1,2, \ldots$.
It follows that

$$
\begin{aligned}
& \left\langle x^{-2 s+1} \ln ^{m}\right| x|, \varphi(x)\rangle=\int_{0}^{\infty} x^{-2 s+1} \ln ^{m} x[\varphi(x)-\varphi(-x) \\
& \left.-2 \sum_{i=0}^{s-2} \frac{\varphi^{(2 i+1)}(0)}{(2 i+1)!} x^{2 i+1}\right] d x, \\
& \left\langle x^{-2 s} \ln ^{m}\right| x|, \varphi(x)\rangle=\int_{0}^{\infty} x^{-2 s} \ln ^{m} x[\varphi(x)+\varphi(-x) \\
& \left.-2 \sum_{i=0}^{s-1} \frac{\varphi^{(2 i)}(0)}{(2 i)!} x^{2 i}\right] d x
\end{aligned}
$$

for $s=1,2, \ldots$ and $m=0,1,2, \ldots$, where φ is an arbitrary function in \mathcal{D}, see Gel'fand and Shilov [4].

The next definition for the non-commutative neutrix product of two distributions was given in [3] and generalizes Definition 1.
Definition 2. Let f and g be distributions in \mathcal{D}^{\prime} and let $g_{n}(x)=\left(g * \delta_{n}\right)(x)$. We say that the neutrix product $f \circ g$ of f and g exists and is equal to the distribution h on the interval (a, b) if

$$
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim }\left\langle f(x) g_{n}(x), \varphi(x)\right\rangle=\langle h(x), \varphi(x)\rangle
$$

for all functions φ in \mathcal{D} with support contained in the interval (a, b), where N is the neutrix, see van der Corput [1], having domain $N^{\prime}=\{1,2, \ldots, n, \ldots\}$ and range the real numbers, with negligible functions finite linear sums of the functions

$$
n^{\lambda} \ln ^{r-1} n, \quad \ln ^{r} n: \quad \lambda>0, \quad r=1,2, \ldots
$$

and all functions which converge to zero in the normal sense as n tends to infinity.

It is obvious that if the product $f g$ exists, then the neutrix product $f \circ g$ exists and $f g=f \circ g$.

The following theorem is easily proved.
Theorem 1. Let f and g be distributions in \mathcal{D}^{\prime} and suppose that the neutrix product $f \circ g^{\prime}\left(\right.$ or $\left.f^{\prime} \circ g\right)$ exists. Then the neutrix product $f^{\prime} \circ g\left(o r f \circ g^{\prime}\right)$ exists and

$$
\begin{equation*}
(f \circ g)^{\prime}=f \circ g^{\prime}+f^{\prime} \circ g \tag{1}
\end{equation*}
$$

Using the neutrix product, the next theorem was proved in [3].
Theorem 2. The neutrix products $\delta^{(r)}(x) \circ x^{-s}$ and $x^{-s} \circ \delta^{(r)}(x)$ exist and

$$
\begin{align*}
& \delta^{(r)}(x) \circ x^{-s}=0, \tag{2}\\
& x^{-s} \circ \delta^{(r)}(x)=\frac{(-1)^{s} r!}{(r+s)!} \delta^{(r+s)}(x) \tag{3}
\end{align*}
$$

for $r=0,1,2, \ldots$ and $s=1,2, \ldots$.
We first of all prove the following theorem.
Theorem 3. The neutrix product $\delta^{(r)}(x) \circ \ln ^{m}|x|$ exists and

$$
\begin{equation*}
\delta^{(r)}(x) \circ \ln ^{m}|x|=2 c_{m} \delta^{(r)}(x), \tag{4}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $m=1,2, \ldots$, where

$$
c_{m}=\int_{0}^{1} \ln ^{m} u \delta(u) d u
$$

for $m=1,2, \ldots$.
Proof. Putting

$$
\left(\ln ^{m}|x|\right)_{n}=\ln ^{m}|x| * \delta_{n}(x)=\int_{-1 / n}^{1 / n} \ln ^{m}|x-t| \delta_{n}(t) d t
$$

we have

$$
\begin{aligned}
\left\langle\delta^{(r)}(x), x^{k}\left(\ln ^{m}|x|\right)_{n}\right\rangle & =(-1)^{r}\left\langle\delta(x),\left[x^{k}\left(\ln ^{m}|x|\right)_{n}\right]^{(r)}\right\rangle \\
& =(-1)^{r} \sum_{i=0}^{k}\binom{r}{i} \frac{k!}{(k-i)!}\left\langle\delta(x), x^{k-i}\left[\left(\ln ^{m}|x|\right)_{n}\right]^{(r-i)}\right\rangle \\
& =(-1)^{r} k!\binom{r}{k} \int_{-1 / n}^{1 / n} \ln ^{m}|t| \delta_{n}^{(r-k)}(t) d t \\
& =(-1)^{k} k!n^{r-k}\binom{r}{k} \int_{-1}^{1} \ln ^{m}|u / n| \rho^{(r-k)}(u) d u
\end{aligned}
$$

for $k=0,1,2, \ldots r-1$. It follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{\infty}}\left\langle\delta^{(r)}(x), x^{k}\left(\ln ^{m}|x|\right)_{n}\right\rangle=0 \tag{5}
\end{equation*}
$$

for $k=0,1,2, \ldots, r-1$.
When $k=r$, we have

$$
\left\langle\delta^{(r)}(x), x^{r}\left(\ln ^{m}|x|\right)_{n}\right\rangle=(-1)^{r} r!\int_{-1}^{1} \ln ^{m}|u / n| \rho(u) d u
$$

and it follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{n}\left\langle\delta^{(r)}(x), x^{r}\left(\ln ^{m}|x|\right)_{n}\right\rangle=(-1)^{r} r!\int_{-1}^{1} \ln ^{m}|u| \rho(u) d u=2(-1)^{r} r!c_{m} ~} \tag{6}
\end{equation*}
$$

When $k=r+1$, we have for an arbitrary infinitely differentiable function ψ,

$$
\begin{align*}
\left\langle\delta^{(r)}(x), x^{r+1}\left(\ln ^{m}|x|\right)_{n} \psi(x)\right\rangle & =(-1)^{r}\left\langle\delta(x),\left[x^{r+1}\left(\ln ^{m}|x|\right)_{n} \psi(x)\right]^{(r)}\right\rangle \\
& =0 \tag{7}
\end{align*}
$$

If now φ is an arbitrary function in \mathcal{D}, we have

$$
\varphi(x)=\sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{\varphi^{(r+1)}(\xi x)}{(r+1)!} x^{r+1}
$$

where $0<\xi<1$. It follows that

$$
\begin{aligned}
\left\langle\delta^{(r)}(x)\left(\ln ^{m}|x|\right)_{n}, \varphi(x)\right\rangle= & \sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!}\left\langle\delta^{(r)}(x), x^{k}\left(\ln ^{m}|x|\right)_{n}\right\rangle \\
& +\frac{1}{(r+1)!}\left\langle\delta^{(r)}(x), x^{r+1}\left(\ln ^{m}|x|\right)_{n} \varphi^{(r+1)}(\xi x)\right\rangle
\end{aligned}
$$

and it now follows from equations (5) to (7) that

$$
\begin{aligned}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{m}}\left\langle\delta^{(r)}(x)\left(\ln ^{m}|x|\right)_{n}, \varphi(x)\right\rangle & =2(-1)^{r} c_{m} \varphi^{(r)}(0) \\
& =2 c_{m}\left\langle\delta^{(r)}(x), \varphi(x)\right\rangle
\end{aligned}
$$

proving equation (4) for $r=0,1,2, \ldots$ and $m=1,2, \ldots$ This completes the proof of the theorem.

We now prove
Theorem 4. The neutrix product $\delta^{(r)}(x) \circ\left(x^{-s} \ln ^{m}|x|\right)$ exists and

$$
\begin{equation*}
\delta^{(r)}(x) \circ\left(x^{-s} \ln ^{m}|x|\right)=0 \tag{8}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $s, m=1,2, \ldots$.

Proof. We first of all prove that

$$
\begin{equation*}
\delta^{(r)}(x) \circ\left(x^{-1} \ln ^{m}|x|\right)=0 \tag{9}
\end{equation*}
$$

for $r, m=0,1,2, \ldots$.
Differentiating the equation

$$
\delta^{(r)}(x) \circ \ln ^{m+1}|x|=2 c_{m+1} \delta^{(r)}(x)
$$

and using Theorem 3, we have

$$
\delta^{(r+1)}(x) \circ \ln ^{m+1}|x|+(m+1) \delta^{(r)}(x) \circ\left(x^{-1} \ln ^{m}|x|\right)=2 c_{m+1} \delta^{(r+1)}(x)
$$

and equation (9) follows.
Next, suppose that $\delta^{(r)}(x) \circ\left(x^{-2} \ln ^{m}|x|\right)$ exists and

$$
\begin{equation*}
\delta^{(r)}(x) \circ\left(x^{-2} \ln ^{m}|x|\right)=0 \tag{10}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and some m. This is true when $m=0$. Differentiating the equation

$$
\delta^{(r)}(x) \circ\left(x^{-1} \ln ^{m+1}|x|\right)=0
$$

we get

$$
\begin{aligned}
\delta^{(r+1)}(x) \circ\left(x^{-1} \ln ^{m+1}|x|\right) & -\delta^{(r)}(x) \circ\left(x^{-2} \ln ^{m+1}|x|\right)+(m+1) \delta^{(r)}(x) \\
\circ & \left(x^{-2} \ln ^{m}|x|\right)=-\delta^{(r)}(x) \circ\left(x^{-2} \ln ^{m+1}|x|\right)=0
\end{aligned}
$$

on using equation (9) and our assumption. Equation (10) follows by induction for $r, m=0,1,2, \ldots$.

We have therefore proved that

$$
\begin{equation*}
\delta^{(r)}(x) \circ\left(x^{-i} \ln ^{m}|x|\right)=0 \tag{11}
\end{equation*}
$$

for $i=1,2$ and $r, m=0,1,2, \ldots$.
We can now prove similarly that

$$
\delta^{(r)}(x) \circ\left(x^{-3} \ln ^{m}|x|\right)=0
$$

for $r, m=0,1,2, \ldots$ and so on.
In general, suppose that equation (11) holds for $i=1,2, \ldots, s$ and some s and $r, m=0,1,2, \ldots$. This is true when $s=1$ or 2 . Then suppose that

$$
\begin{equation*}
\delta^{(r)}(x) \circ\left(x^{-s-1} \ln ^{m}|x|\right)=0, \tag{12}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and some m. This is true when $m=0$. From our assumption on equation (11) with $i=s$ and $m+1$ for m, we have

$$
\begin{equation*}
\delta^{(r)}(x) \circ\left(x^{-s} \ln ^{m+1}|x|\right)=0 . \tag{13}
\end{equation*}
$$

Differentiating equation (13), we have

$$
\begin{aligned}
\delta^{(r+1)}(x) \circ\left(x^{-s} \ln ^{m+1}|x|\right)-s \delta^{(r)}(x) \circ & \circ\left(x^{-s-1} \ln ^{m+1}|x|\right) \\
& +(m+1) \delta^{(r)}(x) \circ\left(x^{-s-1} \ln ^{m}|x|\right)=0
\end{aligned}
$$

and it follows from our assumptions that

$$
\delta^{(r)}(x) \circ\left(x^{-s-1} \ln ^{m+1}|x|\right)=0 .
$$

Equation (12) follows by induction for $r, m=0,1,2, \ldots$ Equation (11) therefore holds $i=1,2, \ldots, s+1$ and $r, m=0,1,2, \ldots$ and so follows by induction for $r, m=0,1,2, \ldots$ and $s=1,2, \ldots$. This completes the proof of the theorem.

In the next theorem we put

$$
c_{r, m}=\int_{0}^{1} u^{r} \ln ^{m} u \rho^{(r)}(u) d u
$$

for $r=0,1,2, \ldots$ and $m=1,2, \ldots$.
Integrating by parts, we have

$$
\begin{aligned}
c_{r, m} & =-\int_{0}^{1}\left[m u^{r-1} \ln ^{m-1} u+r u^{r-1} \ln ^{m} u\right] \rho^{(r-1)}(u) d u \\
& =-m c_{r-1, m-1}-r c_{r-1, m}, \\
c_{1, m} & =-m c_{0, m-1}-c_{0, m}, \\
& =-m c_{m-1}-c_{m} .
\end{aligned}
$$

It follows by induction that

$$
\begin{aligned}
c_{r, m} & =-(-1)^{r} r!c_{m}-m r!\sum_{i=1}^{r} \frac{(-1)^{i} c_{r-i, m-1}}{(r-i+1)!} \\
& =(-1)^{r} r!c_{m}+(-1)^{r} m r!c_{m-1}+m r!\sum_{i=1}^{r-1} \frac{(-1)^{i} c_{r-i, m-1}}{(r-i+1)!}
\end{aligned}
$$

and so each $c_{r, m}$ can be expressed as a linear sum of $c_{1}, c_{2}, \ldots, c_{m}$ for $r, m=$ $1,2, \ldots$.

Theorem 5. The neutrix product $\ln ^{m}|x| \circ \delta^{(r)}(x)$ exists and

$$
\begin{equation*}
\ln ^{m}|x| \circ \delta^{(r)}(x)=\frac{2(-1)^{r} c_{r, m}}{r!} \delta^{(r)}(x) \tag{14}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $m=1,2, \ldots$.

Proof. We have

$$
\begin{aligned}
\left\langle\ln ^{m}\right| x\left|, x^{k} \delta_{n}^{(r)}(x)\right\rangle & =\int_{-1 / n}^{1 / n} \ln ^{m}|x| x^{k} \delta_{n}^{(r)}(x) d x \\
& =n^{r-k} \int_{-1}^{1} \ln ^{m}|u / n| u^{k} \rho^{(r)}(u) d u
\end{aligned}
$$

for $k=0,1,2, \ldots$ It follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim }\left\langle\ln ^{m}\right| x\left|, x^{k} \delta_{n}^{(r)}(x)\right\rangle=0, \tag{15}
\end{equation*}
$$

for $k=0,1,2, \ldots, r-1$.
When $k=r$, we have

$$
\left\langle\ln ^{m}\right| x\left|, x^{r} \delta_{n}^{(r)}(x)\right\rangle=\int_{-1}^{1} u^{r} \ln ^{m}|u / n| \rho^{(r)}(u) d u
$$

and it follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{\infty}}\left\langle\ln ^{m}\right| x\left|, x^{r} \delta_{n}^{(r)}(x)\right\rangle=\int_{-1}^{1} u^{r} \ln ^{m}|u| \rho^{(r)}(u) d u=2 c_{r, m} \tag{16}
\end{equation*}
$$

When $k=r+1$, we have for an arbitrary infinitely differentiable function ψ,

$$
\begin{align*}
\left\langle\ln ^{m}\right| x\left|, x^{r+1} \delta_{n}^{(r)}(x) \psi(x)\right\rangle & =n^{-1} \int_{-1}^{1} u^{r+1} \ln ^{m}|u / n| \rho^{(r)}(u) \psi(u / n) d u \\
& =O\left(n^{-1} \ln ^{m} n\right) . \tag{17}
\end{align*}
$$

If now φ is an arbitrary function in \mathcal{D}, we have

$$
\varphi(x)=\sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{\varphi^{(r+1)}(\xi x)}{(r+1)!} x^{r+1},
$$

where $0<\xi<1$. It follows that

$$
\begin{aligned}
\left\langle\ln ^{m}\right| x\left|, \delta_{n}^{(r)}(x) \varphi(x)\right\rangle=\sum_{k=0}^{r} & \frac{\varphi^{(k)}(0)}{k!}\left\langle\ln ^{m}\right| x\left|, x^{k} \delta_{n}^{(r)}(x)\right\rangle \\
& \quad+\frac{1}{(r+1)!}\left\langle\ln ^{m}\right| x\left|, x^{r+1} \delta_{n}^{(r)}(x), \varphi^{(r+1)}(\xi x)\right\rangle
\end{aligned}
$$

and it now follows from equations (15) to (17) that

$$
\begin{aligned}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{n \rightarrow}}\left\langle\ln ^{m}\right| x\left|, \delta_{n}^{(r)}(x) \varphi(x)\right\rangle & =\frac{2 c_{r, m}}{r!} \varphi^{(r)}(0) \\
& =\frac{2(-1)^{r} c_{r, m}}{r!}\left\langle\delta^{(r)}(x), \varphi(x)\right\rangle,
\end{aligned}
$$

proving equation (14) for $r=0,1,2, \ldots$ and $m=1,2, \ldots$ This completes the proof of the theorem.

We finally prove the following generalization of equation (3).
Theorem 6. The neutrix product $\left(x^{-s} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)$ exists for $r=0,1, \ldots$ and $s, m=1,2, \ldots$.

In particular,

$$
\begin{equation*}
\left(x^{-1} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)=\frac{2(-1)^{r+1} c_{r, m}}{(r+1)!} \delta^{(r+1)}(x) \tag{18}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $m=1,2, \ldots$.
Proof. We first of all prove equation (18). We have

$$
\begin{align*}
&(m+1)\left\langle x^{-1} \ln ^{m}\right| x\left|, x^{k} \delta_{n}^{(r)}(x)\right\rangle=-\int_{-1 / n}^{1 / n} \ln ^{m+1}|x|\left[x^{k} \delta_{n}^{(r)}(x)\right]^{\prime} d x \\
&=-n^{r-k+1} \int_{-1}^{1}[\ln |u|-\ln n]^{m+1}\left[u^{k} \rho^{(r)}(u)\right]^{\prime} d u \tag{19}
\end{align*}
$$

on making the substitution $n x=u$. It follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim }\left\langle x^{-1} \ln ^{m}\right| x\left|, x^{k} \delta_{n}^{(r)}(x)\right\rangle=0 \tag{20}
\end{equation*}
$$

for $k=0,1,2, \ldots, r$,

$$
\begin{align*}
\mathrm{N}-\lim _{n \rightarrow \infty}\left\langle x^{-1} \ln ^{m}\right| x\left|, x^{r+1} \delta_{n}^{(r+1)}(x)\right\rangle & =-(m+1)^{-1} \int_{-1}^{1} \ln ^{m+1}|u|\left[u^{r+1} \rho^{(r)}(u)\right]^{\prime} d u \\
& =\int_{-1}^{1} u^{r} \ln ^{m}|u| \rho^{(r)}(u) d u \\
& =2 c_{r, m} \tag{21}
\end{align*}
$$

when $k=r+1$ and

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim }\left\langle x^{-1} \ln ^{m}\right| x\left|, x^{r+1} \delta_{n}^{(r)}(x) \psi(x)\right\rangle=0 \tag{22}
\end{equation*}
$$

for any infinitely differentiable function $\psi(x)$, when $k=r+2$.
If now φ is an arbitrary function in \mathcal{D}, we have

$$
\varphi(x)=\sum_{k=0}^{r+1} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{\varphi^{(r+1)}(\xi x)}{(r+2)!} x^{r+2}
$$

where $0<\xi<1$. It follows that

$$
\begin{aligned}
\left\langle x^{-1} \ln ^{m}\right| x\left|, \delta_{n}^{(r)}(x) \varphi(x)\right\rangle= & \sum_{k=0}^{r+1} \frac{\varphi^{(k)}(0)}{k!}\left\langle x^{-1} \ln ^{m}\right| x\left|, x^{k} \delta_{n}^{(r)}(x)\right\rangle \\
& +\frac{1}{(r+2)!}\left\langle\ln ^{m}\right| x\left|, x^{r+2} \delta_{n}^{(r+1)}(x), \varphi^{(r+2)}(\xi x)\right\rangle
\end{aligned}
$$

and it now follows from equations (20) to (22) that

$$
\begin{aligned}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{\infty}\left\langle x^{-1} \ln ^{m}\right| x\left|, \delta_{n}^{(r)}(x) \varphi(x)\right\rangle} & =\frac{2 c_{r, m}}{(r+1)!} \varphi^{(r+1)}(0) \\
& =\frac{2(-1)^{r+1} c_{r, m}}{(r+1)!}\left\langle\delta^{(r+1)}(x), \varphi(x)\right\rangle,
\end{aligned}
$$

proving equation (18) for $r=0,1,2, \ldots$ and $m=1,2, \ldots$.
Next, suppose that $\left(x^{-2} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)$ exists and

$$
\begin{equation*}
\left(x^{-2} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)=c_{r, 2, m} \delta^{(r+2)}(x) \tag{23}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and some m. This is true when $m=0$ with $c_{r, 2,0}=$ $r!/(r+2)!$. Differentiating the equation

$$
\left(x^{-1} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x)=\frac{2(-1)^{r+1} c_{r, m}}{(r+1)!} \delta^{(r+1)}(x)
$$

we get

$$
\begin{aligned}
& \left(x^{-1} \ln ^{m+1}|x|\right) \circ \delta^{(r+1)}(x)-\left(x^{-2} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x) \\
& \quad+(m+1)\left(x^{-2} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)=\frac{2(-1)^{r+1} c_{r, m}}{(r+1)!} \delta^{(r+2)}(x) \\
& =\frac{2(-1)^{r+2} c_{r+1, m}}{(r+2)!} \delta^{(r+2)}(x)-\left(x^{-2} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x) \\
& \\
& \quad+(m+1) c_{r, 2, m} \delta^{(r+2)}(x)
\end{aligned}
$$

on using equation (18) and our assumption. This proves the existence of $\left(x^{-2} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x)$ and

$$
\left(x^{-2} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x)=c_{r, 2, m+1} \delta^{(r+2)}(x)
$$

with

$$
c_{r, 2, m+1}=\frac{2(-1)^{r} c_{r, m}}{(r+1)!}+\frac{2(-1)^{r} c_{r+1, m}}{(r+2)!}+(m+1) c_{r, 2, m} .
$$

Therefore $\left(x^{-2} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x)$ exists and equation (23) follows by induction for $r, m=0,1,2, \ldots$.

We have therefore proved that

$$
\begin{equation*}
\left(x^{-i} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)=c_{r, i, m} \delta^{(r+i)}(x) \tag{24}
\end{equation*}
$$

for $i=1,2$ and $r, m=0,1,2, \ldots$.
We can now prove similarly that

$$
\left(x^{-3} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)=c_{r, 3, m} \delta^{(r+3)}(x)
$$

for $r, m=0,1,2, \ldots$ and so on.
In general, suppose that equation (24) holds for $i=1,2, \ldots, s$ and some s and $r, m=0,1,2, \ldots$ This is true when $s=1$ or 2 . Then suppose that $\left(x^{-s-1} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)$ exists and

$$
\begin{equation*}
\left(x^{-s-1} \ln ^{m}|x|\right) \circ \delta^{(r)}(x)=c_{r, s+1, m} \delta^{(r+s+1)}(x), \tag{25}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and some m. This is true with

$$
c_{r, s+1,0}=\frac{(-1)^{s+1} r!}{(r+s+1)!},
$$

when $m=0$. From our assumption on equation (24) with $i=s$ and $m+1$ for m, we have

$$
\begin{equation*}
\left(x^{-s} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x)=c_{r, s, m+1} \delta^{(r+s)}(x) . \tag{26}
\end{equation*}
$$

Differentiating equation (26), we have

$$
\begin{aligned}
&\left(x^{-s} \ln ^{m+1}|x|\right) \circ \delta^{(r+1)}(x)-s\left(x^{-s-1} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x) \\
&+(m+1) \\
&\left(x^{-s-1} \ln ^{m}|x|\right) \circ \delta^{(r)}(x) \\
&=\left[c_{r+1, s, m+1}+(m+1) c_{r, s+1, m}\right] \delta^{(r+s+1)}(x)-s\left(x^{-s-1} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x) \\
&=c_{r, s, m+1} \delta^{(r+s+1)}(x),
\end{aligned}
$$

from our assumptions and it follows that

$$
\begin{aligned}
\left(x^{-s-1} \ln ^{m+1}|x|\right) \circ \delta^{(r)}(x)= & s^{-1}\left[c_{r+1, s, m+1}+(m+1) c_{r, s+1, m}\right. \\
& \left.-c_{r, s, m+1}\right] \delta^{(r+s+1)}(x) \\
= & c_{r, s+1, m+1} \delta^{(r+s+1)}(x)
\end{aligned}
$$

Equation (25) therefore holds for $m+1$, with

$$
c_{r, s+1, m+1}=s^{-1}\left[c_{r+1, s, m+1}+(m+1) c_{r, s+1, m}-c_{r, s+1, m}\right],
$$

and so follows by induction for $r, m=0,1,2, \ldots$. Then equation (24) holds for $i=1,2, \ldots, s+1$. Equation (24) follows by induction for $r, m=0,1,2, \ldots$ and $s=1,2, \ldots$. This completes the proof of the theorem.

Acknowledgement. The authors would like to thank the referee for his help in the improvement of this paper.

References

[1] J.G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math., 7 (1959-60), 291-398.
[2] B. Fisher, The product of distributions, Quart. J. Math. Oxford, 22 (2) (1971), 291298.
[3] B. Fisher, A non-commutative neutrix product of distributions, Math. Nachr., 108 (1982), 117-127.
[4] I.M. Gel'fand and G.E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.
(Received: April 12, 2006)
(Revised: June 23, 2006)
B. Fisher

Department of Mathematics
Leicester University
Leicester, LE1 7RH, England
E-mail: fbr@le.ac.uk
I. Ege and E. Özçag

Department of Mathematics
University of Hacettepe
06532-Beytepe, Ankara, Turkey
E-mail: incicankoy@hotmail.com
E-mail: ozcag1@hacettepe.edu.tr

[^0]: 2000 Mathematics Subject Classification. 46F10.
 Key words and phrases. Distribution, delta-function, neutrix, neutrix limit, neutrix product.

