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TWO EXPONENTIAL FORMULAS FOR α−TIMES
INTEGRATED SEMIGROUPS (α ∈ R+)

FIKRET VAJZOVIĆ AND RAMIZ VUGDALIĆ

Abstract. In this paper X is a Banach space, (S(t))t≥0 is non-degene-

rate α−times integrated, exponentially bounded semigroup on X (α ∈
R+), M ≥ 0 and ω0 ∈ R are constants such that ‖S(t)‖ ≤ Meω0t for
all t ≥ 0, γ is any positive constant greater than ω0, Γ is the Gamma-
function, (C, β)− lim is the Cesàro-β limit. Here we prove that

lim
n→∞

1

Γ(α)

T∫
0

(T − s)α−1

(
n + 1

s

)n+1

Rn+1

(
n + 1

s
, A

)
x ds = S(T )x,

for every x ∈ X, and the limit is uniform in T > 0 on any bounded
interval. Also we prove that

S(t)x =
1

2πi
(C, β)− lim

ω→∞

γ+iω∫
γ−iω

eλt R(λ, A)x

λα
dλ,

for every x ∈ X, β > 0 and t ≥ 0.

1. Introduction

Once integrated exponentially bounded semigroups of operators on a Ba-
nach space were introduced and investigated in [1], [2], [3], [7] and studied by
Arendt, Kellermann, Hieber, Thieme and many others. The n−times inte-
grated exponentially bounded semigroups of operators, n ∈ N, on a Banach
space were introduced and investigated in [4] by Neubrander. The α−times
integrated exponentially bounded semigroups of operators, α ∈ R+, on a
Banach space were investigated in [9] , by Mijatović, Pilipović and Vajzović.
Some exponential formulas for C0−semigroups of operators on a Banach

2000 Mathematics Subject Classification. 47D06, 47D60, 47D62.
Key words and phrases. C0− semigroup, α− times integrated exponentially bounded

semigroup, exponential formula, Banach space, linear operator.
Research is partially supported by the grant 04-39-3265-2/03 (11.12.2003.) of Federal

Ministary of Education and Science, Bosnia and Herzegovina.



94 FIKRET VAJZOVIĆ AND RAMIZ VUGDALIĆ

space X are given and proved in [6]. These formulas are the motivation for
our further analysis.

2. Preliminaries from the theory of α−times integrated
semigroup (α ∈ R+)

We refer to [9] for the notion of α− times integrated semigroups (α ∈ R+).
We denote by X a Banach space with the norm ‖·‖ ; L(X) = L(X,X) is the
space of bounded linear operators from X into X.

Definition 2.1. Let (S(t))t≥0 be a strongly continuous family of opera-
tors in L(X) and α ∈ R+. Then, (S(t))t≥0 is called an α−times integrated
semigroup if S(0) = 0 and the following holds

S(t)S(s) =
1

Γ(α)

[ t+s∫
t

(t+ s− r)α−1 S(r)dr−
s∫

0

(t+ s− r)α−1 S(r)dr
]
,

for every t, s ≥ 0. (S(t))t≥0 is called non-degenerate if S(t)x = 0 for all
t ≥ 0 implies x = 0. If there exist constants M ≥ 0 and ω ∈ R such that
‖S(t)‖ ≤Meωt for all t ≥ 0, then (S(t))t≥0 is called an α− times integrated,
exponentially bounded semigroup.

Theorem 2.1. Let α ∈ R+, S : [0,∞) → L(X) be a strongly continuous
family, exponentially bounded at infinity ( i.e. it satisfies ‖S(t)‖ ≤Meωt for
t ≥ 0 and some constants M ≥ 0 and ω ∈ R), and R(λ) = λα

∫∞
0 e−λtS(t)dt,

Reλ > ω. Then, R(λ), Reλ > ω, is a pseudoresolvent (i.e. it satisfies the
resolvent equation R(λ)−R(µ) = (µ− λ)R(λ)R(µ)) if and only if

S(t)S(s) =
1

Γ(α)

[ t+s∫
t

(t+ s− r)α−1 S(r)dr−
s∫

0

(t+ s− r)α−1 S(r)dr
]
,

for every t, s ≥ 0.

Let (S(t))t≥0 be an α− times integrated semigroup, α ∈ R+. Let R(λ) =
λα

∫∞
0 e−λtS(t)dt, Reλ > ω. Here we take the branch of the function λα for

which 1α := 1. Then, by the resolvent equation, KerR(λ) is independent of
Reλ > ω. Hence, by the uniqueness theorem, R(λ) is injective if and only
if (S(t))t≥0 is non-degenerate. In this case there exists a unique operator A
satisfying (ω,∞) ⊂ ρ(A)(ρ(A) is the resolvent set of A) such that R(λ) =
(λI −A)−1 for all λ with Reλ > ω. This operator is called the generator of
(S(t))t≥0 .

Definition 2.2. Let α ∈ R+. An operator A is the generator of an α−times
integrated, exponentially bounded semigroup (S(t))t≥0 if and only if (a,∞)
⊂ ρ(A) for some a ∈ R and R(λ,A)x = λα

∫∞
0 e−λtS(t)xdt, x ∈ X,Reλ > a.
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The following theorems (exponential formulas) hold for C0− semigroups
(see [6]).

Theorem 2.2. Let T (t), t ≥ 0, be a C0− semigroup on X. If A is the
infinitesimal generator of T (t), t ≥ 0, then

T (t)x = lim
n→∞

(
I − t

n
A

)−n
x = lim

n→∞

[n
t
R

(n
t
,A

)]n
x,

for every x ∈ X, t ≥ 0, and the limit is uniform on any bounded interval
[a, b] ⊂ [0,∞) .

Theorem 2.3. Let T (t), t ≥ 0, be a C0− semigroup on X such that ‖T (t)‖ ≤
Meωt for all t ≥ 0 (for suitable constants M ≥ 1 and ω ≥ 0 ). If A is the
infinitesimal generator of T (t), t ≥ 0, then

T (t)x = (C, 1)− lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλtR(λ,A)x dλ,

for every x ∈ X, t ≥ 0, γ > ω. Here (C, 1)− lim means the Cesàro - 1 limit.

We generalize these theorems for α−times integrated semigroups (α∈R+).

3. Exponential formulas for α−times integrated semigroups
(α ∈ R+)

First of all, we need two lemmas.

Lemma 3.1. Let α ∈ R. Then,
n∑
k=0

(−1)k
(
n

k

)
(n− k)!

(
α

n− k

) k∑
i=0

(
k

i

)
i!
(
α+ i− 1

i

)
ak−i = (−1)nan

for all n ∈ N and for all a ∈ R.

Proof. Let n ∈ N be fixed and a ∈ R. The expression on the left side of the
equation designate with A(n). Obviously, A(n) is a polynomial of degree n
in the variable a, i.e., A(n) =

∑n
l=0Ala

l. Using the substitution k − i = l,
we obtain for every l ∈ {0, 1, 2, . . . , n} :

Al =
n∑
k=l

(−1)k
(
n
k

)
(n− k)!

(
α

n− k

) (
k

k − l

)
(k − l)!

(
α+ k − l − 1

k − l

)

=
n!
l!

n∑
k=l

(−1)k
(

α
n− k

) (
α+ k − l − 1

k − l

)
.
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The substitution k − l = s, leads us to the next equality

Al = (−1)l
n!
l!

n−l∑
s=0

(−1)s
(

α
n− l − s

) (
α+ s− 1

s

)
, l ∈ {0, 1, 2, . . . , n} .

For l = n we have that An = (−1)n. We want to prove that Al = 0 for
l = 0, 1, 2, . . . , n− 1. If we take n− l = m, then we need to prove that

m∑
s=0

(−1)s
(

α
m− s

) (
α+ s− 1

s

)
= 0, for m = 1, 2, . . . , n.

Consider now the Taylor’s series of the functions xα and x−α in a neighbor-
hood of x = 1. We have

xα =
∞∑
k=0

(
α
k

)
(x− 1)k

and

x−α =
∞∑
k=0

(−1)k
(
α+ k − 1

k

)
(x− 1)k, x ∈ (0, 2) .

These series converge absolutely on the interval (0, 2) . Therefore, for all
x ∈ (0, 2) we have

1 ≡ xα · x−α =
∞∑
k=0

(
α
k

)
(x− 1)k ·

∞∑
k=0

(−1)k
(
α+ k − 1

k

)
(x− 1)k

= 1 +
∞∑
m=1

am(x− 1)m,

where am =
m∑
s=0

(−1)s
(

α
m− s

) (
α+ s− 1

s

)
. Hence, am = 0 for all m =

1, 2, . . . . �

Lemma 3.2. If Γ is the Gamma - function, then

lim
n→∞

(n+ 1)α

n!
Γ(n+ 1− α) = 1.

Proof. Let n0 > α, n0 ∈ N and n > n0. Then
(n+ 1)α Γ (n+ 1− α)

n!
=

=
(n+ 1)α

n!
(n− α) (n− α− 1) . . . (n0 − α) Γ (n0 − α)

=
(n+ 1)α

n!
(n− α) (n− α− 1) . . . (n0 − α) Γ (n0 −α)

(n− n0)
n0−α (n−n0)!

(n−n0)
n0−α (n−n0)!
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=
(
n+ 1
n− n0

)α (n− α) (n− α− 1) . . . (n0 − α) Γ (n0 − α)
(n− n0)

n0−α (n− n0)!
(n− n0)

n0

n (n− 1) ... (n− n0 + 1)
.

All of the factors on the right side converges to 1 as n→∞. Therefore,

lim
n→∞

(n+ 1)α

n!
Γ(n+ 1− α) = 1.

�

Theorem 3.1. Let (S(t))t≥0 be non-degenerate α− times integrated, expo-
nentially bounded semigroup on a Banach space X (α ∈ R+), and let A be
its generator. Then

lim
n→∞

1
Γ(α)

T∫
0

(T − s)α−1

(
n+ 1
s

)n+1

Rn+1

(
n+ 1
s

,A

)
x ds = S(T )x,

for every x ∈ X, and the limit is uniform in T > 0 on any bounded interval
[a, b] ⊂ [0,∞) .

Remark 3.1. In particular, for α = 1, the assertion of this theorem was
recently proved in [8] .

Proof. It is well known that

R(λ,A) = (λI −A)−1 = λα
∞∫
0

e−λtS(t) dt. (1)

Since

dn

dλn

[
λα

∞∫
0

e−λtS(t) dt
]

=

=
n∑
k=0

(
n
k

)
(n− k)!

(
α

n− k

)
(−1)kλα−n+k

∞∫
0

tke−λtS(t) dt,

by putting λ = n+1
s , it follows from (1) that

dn

dλn
[R(λ,A)]λ=n+1

s
=

n∑
k=0

(
n
k

)
(n− k)!

(
α

n− k

)
·

· (−1)k
(
n+ 1
s

)α−n+k
∞∫
0

tke−
n+1

s
tS(t) dt.

(2)
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But,
dn

dλn
R(λ,A) = (−1)nn!Rn+1(λ,A), n ∈ N, λ ∈ ρ(A), (3)

and therefore from (2), and (3) it follows that

Rn+1

(
n+ 1
s

,A

)
=

(−1)n

n!

n∑
k=0

(
n

k

)
(n− k)!

(
α

n− k

)
·

· (−1)k
(
n+ 1
s

)α−n+k
∞∫
0

tke−
n+1

s
tS(t) dt.

(4)

Consider now the integral

I =
1

Γ(α)

∫ T

0
(T − s)α−1

(
n+ 1
s

)n+1

Rn+1

(
n+ 1
s

,A

)
ds

=
(−1)n

n!Γ(α)

n∑
k=0

(
n
k

)
(n− k)!

(
α

n− k

)
(−1)k

∫ ∞

0
tkS(t) ·

·
∫ T

0
(T − s)α−1

(
n+ 1
s

)α+k+1

e−
n+1

s
tds dt.

(5)

First of all, consider the inside integral Iint. By substituting (n + 1) ts = u,
we have

Iint =

T∫
0

(T − s)α−1

(
n+ 1
s

)α+k+1

e−
n+1

s
tds

=
n+ 1
tα+k

∞∫
(n+1)t/T

(Tu− (n+ 1)t)α−1 uke−udu.

The substitution u− (n+1)t
T = z gives

Iint =
n+ 1
tα+k

∞∫
0

zα−1Tα−1

(
z +

(n+ 1)t
T

)k

e−z−
(n+1)t

T dz

=
(n+ 1)Tα−k−1

tα+ke(n+1)t/T

∞∫
0

zα−1e−z [Tz + (n+ 1)t]k dz.

Using the binomial formula and the next property of the Gamma - function:

Γ(α+ i) = i!
(
α+ i− 1

i

)
Γ(α),
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we obtain

Iint =
(n+ 1)Tα−k−1

tα+ke(n+1)t/T

k∑
i=0

(
k

i

)
[(n+ 1)t]k−i T i

∞∫
0

zα+i−1e−zdz

=
(n+ 1)Tα−1

tα+ke(n+1)t/T

k∑
i=0

(
k

i

)[
(n+ 1)t

T

]k−i
Γ(α+ i)

=
(n+ 1)Tα−1Γ(α)
tα+ke(n+1)t/T

k∑
i=0

(
k

i

)
i!
(
α+ i− 1

i

)[
(n+ 1)t

T

]k−i
.

(6)

Now (5), and (6) imply

I =
(−1)n

n!

n∑
k=0

(
n
k

)
(n− k)!

(
α

n− k

)
(−1)k(n+ 1)Tα−1

∫ ∞

0
t−αe−(n+1)t/TS(t)

k∑
i=0

(
k
i

)
i!

(
α+ i− 1

i

) (
(n+ 1)t

T

)k−i
dt

=
(−1)n(n+ 1)Tα−1

n!

∫ ∞

0
t−αe−(n+1)t/TS(t)

n∑
k=0

(
n
k

)
(n− k)! ·

·
(

α
n− k

)
(−1)k

k∑
i=0

(
k
i

)
i!

(
α+ i− 1

i

) (
(n+ 1)t

T

)k−i
dt. (7)

By Lemma 3.1 and (7), we obtain for a = (n+1)t
T :

I =
(−1)n(n+ 1)Tα−1

n!

∞∫
0

t−αe−(n+1)t/TS(t)(−1)n
(

(n+ 1)t
T

)n

dt

=
(n+ 1)n+1Tα−n−1

n!

∞∫
0

tn−αe−(n+1)t/TS(t)dt. (8)

Using the substitution (n+1)t
T = z, we have further

I =
(n+ 1)n+1Tα−n−1

n!

∞∫
0

(
Tz

n+ 1

)n−α
e−zS

(
zT

n+ 1

)
T

n+ 1
dz. (9)
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Hence, we have that

I =
1

Γ(α)

T∫
0

(T − s)α−1

(
n+ 1
s

)n+1

Rn+1

(
n+ 1
s

,A

)
ds =

=
(n+ 1)α

n!

∞∫
0

S

(
zT

n+ 1

)
zn−αe−zdz. (10)

Fix ε > 0 and choose δ ∈ (0, T) such that for

(n+ 1)
(

1− δ

T

)
< z < (n+ 1)

(
1 +

δ

T

)
, T > 0, n ∈ N,

we have ∥∥∥∥S (
zT

n+ 1

)
x− S(T )x

∥∥∥∥ < ε, x ∈ X.

Put for x ∈ X, T > 0, n ∈ N :

J =
(n+ 1)α

n!

∞∫
0

[
S

(
zT

n+ 1

)
x− S(T )x

]
e−zzn−αdz = J1 + J2 + J3, (11)

where

J1 =
(n+ 1)α

n!

(n+1)(1− δ
T )∫

0

[
S

(
zT

n+ 1

)
x− S(T )x

]
e−zzn−αdz,

J2 =
(n+ 1)α

n!

(n+1)(1+ δ
T )∫

(n+1)(1− δ
T )

[
S

(
zT

n+ 1

)
x− S(T )x

]
e−zzn−αdz,

J3 =
(n+ 1)α

n!

∞∫
(n+1)(1+ δ

T )

[
S

(
zT

n+ 1

)
x− S(T )x

]
e−zzn−αdz.

We will estimate each of these integrals. We have

‖J1‖ ≤
(n+ 1)α

n!

(n+1)(1− δ
T )∫

0

∥∥∥∥S (
zT

n+ 1

)
x− S(T )x

∥∥∥∥ e−zzn−αdz.
We know that (S(t))t≥0 is an exponentially bounded family of operators,
i.e. there exist constants M ≥ 0 and ω0 ∈ R such that ‖S(t)‖ ≤Meω0t, for
all t ≥ 0. Therefore,
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‖J1‖ ≤
(n+ 1)α

n!
M ‖x‖

(n+1)(1− δ
T )∫

0

[
e

ω0zT
n+1 + eω0T

]
e−zzn−αdz = S1 + S2,

where

S1 =
(n+ 1)α

n!
M ‖x‖

(n+1)(1− δ
T )∫

0

e
−z

(
1−ω0T

n+1

)
zn−αdz

and

S2 =
(n+ 1)α

n!
M ‖x‖ eω0T

(n+1)(1− δ
T )∫

0

e−zzn−αdz.

Let us estimate S1. Take z n+1−ω0T
n+1 = u. Then the integral S1 becomes

S1 =
(n+ 1)α

n!
M ‖x‖

(n+1−ω0T )(1− δ
T )∫

0

e−u
(

n+ 1
n+ 1− ω0T

u

)n−α n+ 1
n+ 1− ω0T

du

=
(n+ 1)n+1M ‖x‖

n!(n+ 1− ω0T )n−α+1

(n+1−ω0T )(1− δ
T )∫

0

e−uun−αdu.

The function f(u) = e−uun−α (u ∈ R) takes its maximum value at the
point u = n − α. For sufficiently large n and fixed δ, n − α is greater than
(n + 1 − ω0T )

(
1− δ

T

)
. Note, the function f is increasing in the interval[

0, (n+ 1− ω0T )
(
1− δ

T

)]
. Using these facts, we obtain

S1 ≤
(n+ 1)n+1M ‖x‖

n!(n+ 1− ω0T )n−α+1
(n+ 1− ω0T )

(
1− δ

T

)
·

[
(n+ 1− ω0T )

(
1− δ

T

)]n−α
e(n+1−ω0T )(1− δ

T )
=

(n+ 1)n+1M ‖x‖
(
1− δ

T

)n−α+1

n!e(n+1−ω0T )(1− δ
T )

.

For large n, Stirling’s formula implies

S1 ≤
en(n+ 1)n+1M ‖x‖

(
1− δ

T

)n−α+1

nn
√

2πn · en(1−
δ
T )e(1−ω0T )(1− δ

T )

=
M ‖x‖

√
2π

(
1− δ

T

)α−1
e(1−ω0T )(1− δ

T )

(
1 +

1
n

)n n+ 1√
n

[(
1− δ

T

)
e

δ
T

]n
.

The function g(x) = (1− x)ex, x ∈ R, attains the global maximum 1 at the
point x = 0. Since 0 < δ < T, we have

(
1− δ

T

)
e

δ
T < 1 and

[(
1− δ

T

)
e

δ
T

]n
→ 0
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as n → ∞. Also, n+1√
n

[(
1− δ

T

)
e

δ
T

]n
→ 0 as n → ∞. So we obtain that

S1 → 0 as n → ∞, and the limit is uniform in T > 0 on any bounded
interval.

Let us estimate S2 = (n+1)α

n! M ‖x‖ eω0T
∫ (n+1)(1− δ

T )
0 e−zzn−αdz.

The function f(z) = e−zzn−α (z ∈ R) takes its maximum at the point
z = n− α. For sufficiently large n and fixed δ, n− α belongs to the interval[

(n+ 1)
(

1− δ

T

)
, (n+ 1)

(
1 +

δ

T

)]
.

Hence, the function f is increasing in the interval
[
0, (n+ 1)

(
1− δ

T

)]
. Thus,

S2 ≤
(n+ 1)α

n!
M ‖x‖ eω0T (n+ 1)

(
1− δ

T

) [
(n+ 1)

(
1− δ

T

)]n−α
e(n+1)(1− δ

T )

=
M ‖x‖ eω0T

(
1− δ

T

)1−α

e1−
δ
T

(n+ 1)n+1

n!en

[(
1− δ

T

)
e

δ
T

]n
.

Using Stirling’s formula, for sufficiently large n, we obtain

S2 ≤
M ‖x‖ eω0T

(
1− δ

T

)1−α

e1−
δ
T

(n+ 1)n+1

nn
√

2πn

[(
1− δ

T

)
e

δ
T

]n
=
M ‖x‖ eω0T

(
1− δ

T

)1−α

√
2π · e1−

δ
T

(
1 +

1
n

)n n+ 1√
n

[(
1− δ

T

)
e

δ
T

]n
.

So we obtain that S2 → 0 as n → ∞, and the limit is uniform in T > 0 on
any bounded interval. Hence,

‖J1‖ → 0 as n→∞. (12)

Now, we will estimate the integral J2.

‖J2‖ ≤
(n+ 1)α

n!

(n+1)(1+ δ
T )∫

(n+1)(1− δ
T

)

∥∥∥∥S (
zT

n+ 1

)
x− S(T )x

∥∥∥∥ e−zzn−αdz

< ε
(n+ 1)α

n!

(n+1)(1+ δ
T )∫

(n+1)(1− δ
T )

e−zzn−αdz

< ε
(n+ 1)α

n!

∞∫
0

e−zzn−αdz = ε
(n+ 1)α

n!
Γ(n+ 1− α).
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From Lemma 3.2 we see that lim
n→∞

(n+1)α

n! Γ(n+1−α) = 1. This implies ‖J2‖
≤ ε for large n. Because ε is an arbitrary small number we conclude that

‖J2‖ → 0 as n→∞. (13)

Let us estimate the integral J3.

‖J3‖ ≤
(n+ 1)α

n!

∞∫
(n+1)(1+ δ

T )

∥∥∥∥S (
zT

n+ 1

)
x− S(T )x

∥∥∥∥ e−zzn−αdz
≤ (n+ 1)α

n!
M ‖x‖

∞∫
(n+1)(1+ δ

T )

(
e

ω0zT
n+1 + eω0T

)
e−zzn−αdz =S3 + S4,

where

S3 =
(n+ 1)α

n!
M ‖x‖

∞∫
(n+1)(1+ δ

T )

e
−z

(
1−ω0T

n+1

)
zn−αdz and

S4 =
(n+ 1)α

n!
M ‖x‖ eω0T

∞∫
(n+1)(1+ δ

T )

e−zzn−αdz.

Let us estimate S3. Take z n+1−ω0T
n+1 = u. Then the integral S3 becomes

S3 =
(n+ 1)α

n!
M ‖x‖

∞∫
(n+1−ω0T )(1+ δ

T )

e−u
(

n+ 1
n+ 1− ω0T

u

)n−α n+ 1
n+ 1− ω0T

du

=
(n+ 1)n+1M ‖x‖

n!(n+ 1− ω0T )n−α+1

∞∫
(n+1−ω0T )(1+ δ

T )

e−uun−αdu.

Consider the integral
∞∫

(n+1−ω0T )(1+ δ
T )

e−uun−αdu.

We have
∞∫

(n+1−ω0T )(1+ δ
T )

e−uun−αdu =

∞∫
(n+1−ω0T )(1+ δ

T )

e−u(1−η)e−uηun−αdu, for 0 < η < 1.
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The function h(u) = e−uηun−α, u ∈ R, has a maximum at the point u =
n−α
η . This maximum equals h

(
n−α
η

)
= e−(n−α)(n−α)n−α

ηn−α . Thus, we obtain

∞∫
(n+1−ω0T )(1+ δ

T )

e−uun−αdu =

∞∫
(n+1−ω0T )(1+ δ

T )

e−u(1−η)e−uηun−αdu

<
e−(n−α)(n− α)n−α

ηn−α

∞∫
(n+1−ω0T )(1+ δ

T )

e−u(1−η)du

=
e−(n−α)(n− α)n−α

ηn−α
· e

(η−1)(n+1−ω0T )(1+ δ
T )

1− η
.

Using Stirling’s formula, for sufficiently large n, we obtain

S3 ≤
(n+ 1)n+1enM ‖x‖

nn
√

2πn(n+ 1− ω0T )n−α+1

e−(n−α)(n− α)n−α

ηn−α
e(η−1)(n+1−ω0T )(1+ δ

T )

1− η

=
M ‖x‖ eαηα

(1− η)
√

2πn · e(1−ω0T )(1+ δ
T )(1−η)

(
n+ 1
n

)α (
n+ 1

n+ 1− ω0T

)n−α+1

·

·
(
n− α

n

)n−α 1

ηnen(1+
δ
T )(1−η)

.

Notice that
(
n+1
n

)α → 1,
(

n+1
n+1−ω0T

)n−α+1
→ eω0T and

(
n−α
n

)n−α → e−α,
as n→∞.

If we can prove that ηnen(1+
δ
T )(1−η) → ∞ as n → ∞, then S3 → 0 as

n→∞. Since
ηnen(1+ δ

T )(1−η) = en[ln η+(1+ δ
T )(1−η)],

it is enough to choose η such that

ln η +
(

1 +
δ

T

)
(1− η) > 0.

Since, ln η = ln (1 + (η − 1)) and η−1
η < ln (1 + (η − 1)) < η − 1, we obtain

ln η+
(

1 +
δ

T

)
(1− η) > η − 1

η
+

(
1 +

δ

T

)
(1− η) = (1− η)

(
1 +

δ

T
− 1
η

)
.

But, the last inequality holds for 1
1+ δ

T

< η < 1. Hence, by choosing η ∈(
1

1+ δ
T

, 1
)
, we can conclude that S3 → 0 as n→∞. Moreover, the limit is

uniform in T > 0 on any bounded interval.
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Let us estimate

S4 =
(n+ 1)α

n!
M ‖x‖ eω0T

∞∫
(n+1)(1+ δ

T )

e−zzn−αdz.

If ψ ∈
(

1
1+ δ

T

, 1
)
, then ψnen(1+

δ
T )(1−ψ) →∞ as n→∞. Since

∞∫
(n+1)(1+ δ

T )

e−zzn−αdz =

∞∫
(n+1)(1+ δ

T )

e−z(1−ψ)e−zψzn−αdz

<
e−(n−α)(n− α)n−α

ψn−α

∞∫
(n+1)(1+ δ

T )

e−z(1−ψ)dz

=
e−(n−α)(n− α)n−α

ψn−α
· e

(ψ−1)(n+1)(1+ δ
T )

1− ψ
,

we conclude that

S4 <
(n+ 1)α

n!
M ‖x‖ eω0T e

−(n−α)(n− α)n−α

ψn−α
· e

(ψ−1)(n+1)(1+ δ
T )

1− ψ
.

Using Stirling’s formula, for sufficiently large n, we obtain

S4 <
M ‖x‖ eω0T eαψα

(1− ψ)
√

2πn · e(1+ δ
T )(1−ψ)

(
n+ 1
n

)α (
n− α

n

)n−α 1

ψnen(1+
δ
T )(1−ψ)

.

We know that
(
n+1
n

)α → 1,
(
n−α
n

)n−α → e−α and ψnen(1+
δ
T )(1−ψ) →∞, as

n→∞. Hence, S4 → 0 as n→∞, and, therefore

‖J3‖ → 0 as n→∞. (14)

This limit is uniform in T > 0 on any bounded interval. Finally, by (11),
(12), (13), and (14) we conclude that

J =
(n+ 1)α

n!

∞∫
0

[
S

(
zT

n+ 1

)
x− S(T )x

]
e−zzn−αdz → 0, as n→∞.

(15)
Since, by Lemma 3.2, lim

n→∞
(n+1)α

n! Γ(n+ 1− α) = 1, using (10), and (15) we
obtain

lim
n→∞

1
Γ(α)

T∫
0

(T − s)α−1

(
n+ 1
s

)n+1 [
R

(
n+ 1
s

,A

)]n+1

x ds
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= lim
n→∞

(n+ 1)α

n!

∞∫
0

S

(
zT

n+ 1

)
x · e−zzn−αdz = S(T )x,

for every x ∈ X, and this limit is uniform in T > 0. �

Definition 3.1. Let f(ω) be a function on [0,∞) with values in a com-
plex Banach space X, such that for every λ > 0, e−λωf(ω) ∈ L ([0,∞) , X)
(L ([0,∞) , X) is the space of linear bounded functions from [0,∞) into X).
Then, for β > 0, the Cesàro-β limit of the function f(ω) as ω →∞ is defined
as follows

(C, β)− lim
ω→∞

f(ω) := lim
T→∞

β

T β

T∫
0

(T − ω)β−1 f(ω) dω.

The next result is well-known (for example, see [6] ).

Theorem 3.2. If for some α ≥ 0 : (C,α) − limω→∞ f(ω) = a, then for
every β > α (C, β)− limω→∞ f(ω) = a.

Lemma 3.3. Let 0 < β < 1 and s ≥ π. Then

1∫
0

(1− u)β−1 sin(su)du ≤ M1

sβ
(M1 − some constant).

Proof. Obviously,

1∫
0

(1− u)β−1 sin(su) du =

1∫
0

sin(1− v)s
v1−β dv

= sin s

1∫
0

cos(vs)
v1−β dv − cos s

1∫
0

sin(vs)
v1−β dv.

Therefore, it is sufficient to prove that∣∣∣∣∣∣
1∫

0

cos(vs)
v1−β dv

∣∣∣∣∣∣ ≤ K1

sβ
and

∣∣∣∣∣∣
1∫

0

sin(vs)
v1−β dv

∣∣∣∣∣∣ ≤ K2

sβ
,

where K1 and K2 are some constants.
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Both of these integrals can be estimated in a similar manner. Therefore,
we estimate only

∫ 1
0

sin(vs)
v1−β dv. We have

1∫
0

sin(vs)
v1−β dv =

π/s∫
0

sin(vs)
v1−β dv +

k0−1∑
k=1

(k+1)π/s∫
kπ/s

sin(vs)
v1−β dv +

1∫
k0π/s

sin(vs)
v1−β dv,

(16)
where k0 is a natural number such that k0π

s ≤ 1 < (k0+1)π
s . Since

sup
s∈(0, π]

∣∣∣∣∣∣sβ
1∫

0

(1− u)β−1 sin(su) du

∣∣∣∣∣∣ <∞,

it is enough to assume that s ≥ π and that k0 is an odd natural number.
Obviously,∣∣∣∣∣∣∣

1∫
k0π/s

sin(vs)
v1−β dv

∣∣∣∣∣∣∣ ≤
1∫

k0π/s

dv

v1−β ≤
(k0+1)π/s∫
k0π/s

dv

v1−β ≤
1(

k0π
s

)1−β ·
π

s
.

Hence, it follows that ∣∣∣∣∣∣∣
1∫

k0π/s

sin(vs)
v1−β dv

∣∣∣∣∣∣∣ ≤
(π
s

)β
. (17)

Similarly, ∣∣∣∣∣∣∣
π/s∫
0

sin(vs)
v1−β dv

∣∣∣∣∣∣∣ ≤
π/s∫
0

dv

v1−β =
1
β

(π
s

)β
. (18)

Further, we have

k0−1∑
k=1

(k+1)π/s∫
kπ/s

sin(vs)
v1−β dv =

k0−1∑
k=1

π/s∫
0

sin s
(
v + kπ

s

)(
v + kπ

s

)1−β dv

=
k0−1∑
k=1

(−1)k
π/s∫
0

sin(vs)(
v + kπ

s

)1−β dv

=

π/s∫
0

sin(vs)
k0−1∑
k=1

(−1)k(
v + kπ

s

)1−β dv.
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Therefore we have

k0−1∑
k=1

(k+1)π/s∫
kπ/s

sin(vs)
v1−β dv =

π/s∫
0

sin(vs)
k0−1∑
k=1

(−1)k(
v + kπ

s

)1−β dv. (19)

Now we will estimate the sum
∑k0−1

k=1
(−1)k

(v+ kπ
s )1−β . Clearly∣∣∣∣∣

k0−1∑
k=1

(−1)k(
v + kπ

s

)1−β

∣∣∣∣∣ =
i0∑
i=0

[
1(

v + (2i+ 1)πs
)1−β −

1(
v + (2i+ 2)πs

)1−β

]
,

where i0 = k0−3
2 .

Using Lagrange’s mean value formula we obtain (for some θ ∈ (0, 1) ) :∣∣∣∣∣
k0−1∑
k=1

(−1)k(
v + kπ

s

)1−β

∣∣∣∣∣ = (1− β)
π

s

i0∑
i=0

1(
v + (2i+ 1)πs + θ πs

)2−β

≤ (1− β)
π

s

i0∑
i=0

1(
(2i+ 1)πs

)2−β

= (1− β)
(π
s

)β−1
i0∑
i=0

1
(2i+ 1)2−β

≤ (1− β)
(π
s

)β−1
∞∑
i=0

1
(2i+ 1)2−β

.

This inequality combined with (19) gives∣∣∣∣∣∣∣
k0−1∑
k=1

(k+1)π/s∫
kπ/s

sin(vs)
v1−β dv

∣∣∣∣∣∣∣ ≤ (1− β)
(π
s

)β ∞∑
i=0

1
(2i+ 1)2−β

.

The assertion of our lemma now follows from (17) and (18). �

Theorem 3.3. Let (S(t))t≥0 be an α− times integrated, exponentially boun-
ded semigroup defined on a Banach space X (α ∈ R+). Let M ≥ 0 and ω0 ∈
R satisfy ‖S(t)‖ ≤ Meω0t, for all t ≥ 0. Let 0 < β < 1. If γ > max(ω0, 0),
x ∈ X and t ≥ 0, then we have

S(t)x =
1

2πi
(C, β)− lim

ω→∞

γ+iω∫
γ−iω

eλt
R(λ,A)x

λα
dλ,

and the limit is uniform in t on any bounded interval [a, b] ⊂ [0,∞) .
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Proof. Let γ > max(ω0, 0). By Definition 3.1, for any fixed x ∈ X, t ≥ 0
we have

1
2πi

(C, β)− lim
ω→∞

γ+iω∫
γ−iω

eλt
R(λ,A)x

λα
dλ

= lim
T→∞

β

T β

T∫
0

(T − ω)β−1 dω
1

2πi

γ+iω∫
γ−iω

eλt
R(λ,A)x

λα
dλ (20)

= lim
T→∞

β

T β

T∫
0

(T − ω)β−1 dω
1
2π

ω∫
−ω

e(γ+iτ)t
R(γ + iτ, A)x

(γ + iτ)α
dτ.

We interchange the order of integration and obtain the expression :

lim
T→∞

β

2πT β

[ 0∫
−T

e(γ+iτ)t
R(γ + iτ, A)x

(γ + iτ)α
dτ

T∫
−τ

(T − ω)β−1 dω

+

T∫
0

e(γ+iτ)t
R(γ + iτ, A)x

(γ + iτ)α
dτ

T∫
τ

(T − ω)β−1 dω

]

= lim
T→∞

1
2π

[ 0∫
−T

(
1 +

τ

T

)β
e(γ+iτ)t

R(γ + iτ, A)x
(γ + iτ)α

dτ

+

T∫
0

(
1− τ

T

)β
e(γ+iτ)t

R(γ + iτ, A)x
(γ + iτ)α

dτ

]
.

Because R(γ+iτ,A)x
(γ+iτ)α =

∫∞
0 e−(γ+iτ)sS(s)xds, we obtain

lim
T→∞

1
2π

T∫
−T

(
1− |τ |

T

)β

e(γ+iτ)tdτ

∞∫
0

e−(γ+iτ)sS(s)x ds =

= lim
T→∞

1
2π

[ T∫
−T

(
1− |τ |

T

)β

e(γ+iτ)tdτ

∞∫
0

e−(γ+iτ)s (S(s)x− S(t)x) ds

+ S(t)x

T∫
−T

(
1− |τ |

T

)β

e(γ+iτ)tdτ

∞∫
0

e−(γ+iτ)sds

]
. (21)
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We will prove that the limit given in (21) equals S(t)x. If we put

I1 =

T∫
−T

(
1− |τ |

T

)β

e(γ+iτ)tdτ

∞∫
0

e−(γ+iτ)sds =

T∫
−T

(
1− |τ |

T

)β e(γ+iτ)t

γ + iτ
dτ,

and

I2 =

T∫
−T

(
1− |τ |

T

)β

e(γ+iτ)t dτ

∞∫
0

e−(γ+iτ)s (S(s)x− S(t)x) ds,

then, it suffices to prove that I1 → 2π and I2 → 0, as T →∞. We have

I1 =

T∫
−T

(
1− |τ |

T

)β e(γ+iτ)t

γ + iτ
dτ =

T∫
0

(
1− τ

T

)β [
e(γ+iτ)t

γ + iτ
+
e(γ−iτ)t

γ − iτ

]
dτ

= eγt
T∫

0

(
1− τ

T

)β 2γ cos(τt) + 2τ sin(τt)
γ2 + τ2

dτ.

Now we will show that
T∫

0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ →
∞∫
0

τ sin(τt)
γ2 + τ2

dτ

and
T∫

0

(
1− τ

T

)β cos(τt)
γ2 + τ2

dτ →
∞∫
0

cos(τt)
γ2 + τ2

dτ, (22)

as T → ∞. Let J(T ) =
∫ T
0

(
1− τ

T

)β τ sin(τt)
γ2+τ2 dτ and J =

∫∞
0

τ sin(τt)
γ2+τ2 dτ.

Fix η > 0 and after that select an natural number N0 such that for all
N,N ′ ≥ N0 the following relation holds :

∣∣∣∫ N ′N
τ sin(τt)
γ2+τ2 dτ

∣∣∣ < η
3 . Then we

obtain
∣∣∣∫∞N τ sin(τt)

γ2+τ2 dτ
∣∣∣ ≤ η

3 for every N ≥ N0.

If T > N0, then we have

J(T )− J =

N0∫
0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ +

T∫
N0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ

−
N0∫
0

τ sin(τt)
γ2 + τ2

dτ −
∞∫

N0

τ sin(τt)
γ2 + τ2

dτ. (23)
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Further, we have

|J(T )− J | ≤

∣∣∣∣∣∣
N0∫
0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ−
N0∫
0

τ sin(τt)
γ2 + τ2

dτ

∣∣∣∣∣∣
+

∣∣∣∣∣∣
T∫

N0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∞∫

N0

τ sin(τt)
γ2 + τ2

dτ

∣∣∣∣∣∣ . (24)

The function f(τ) =
(
1− τ

T

)β is decreasing on the interval [N0, T ] . There-
fore, by the second mean value theorem of integral calculus, we obtain

T∫
N0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ =
(

1− N0

T

)β
ξ∫

N0

τ sin(τt)
γ2 + τ2

dτ,

where ξ ∈ [N0, T ] . Then we have∣∣∣∣∣∣
T∫

N0

(
1− τ

T

)β τ sin(τt)
γ2 + τ2

dτ

∣∣∣∣∣∣ =
(

1− N0

T

)β
∣∣∣∣∣∣
ξ∫

N0

τ sin(τt)
γ2 + τ2

dτ

∣∣∣∣∣∣
<
η

3

(
1− N0

T

)β

<
η

3
.

This, together with (24) shows that

|J(T )− J | ≤

∣∣∣∣∣∣
N0∫
0

[(
1− τ

T

)β
− 1

]
τ sin(τt)
γ2 + τ2

dτ

∣∣∣∣∣∣ +
2η
3
,

for T > N0. Further, it follows that

|J(T )− J | ≤
N0∫
0

∣∣∣∣(1− τ

T

)β
− 1

∣∣∣∣ · ∣∣∣∣τ sin(τt)
γ2 + τ2

∣∣∣∣ dτ +
2η
3

=

N0∫
0

[
1−

(
1− τ

T

)β]
·
∣∣∣∣τ sin(τt)
γ2 + τ2

∣∣∣∣ dτ +
2η
3

≤

[
1−

(
1− N0

T

)β
] N0∫

0

∣∣∣∣τ sin(τt)
γ2 + τ2

∣∣∣∣ dτ +
2η
3
.
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It is clear that 1 −
(
1− N0

T

)β → 0 as T → ∞. Therefore, one can find
T0 ≥ N0 such that[

1−
(

1− N0

T

)β
] N0∫

0

∣∣∣∣τ sin(τt)
γ2 + τ2

∣∣∣∣ dτ < η

3

for every T > T0. Hence, for every T > T0 we have |J(T )− J | < η. Because
η > 0 is an arbitrary real number, we conclude that J(T ) → J as T → ∞.
By the same method, it can be proved that

T∫
0

(
1− τ

T

)β cos(τt)
γ2 + τ2

dτ →
∞∫
0

cos(τt)
γ2 + τ2

dτ as T →∞.

It is well known that
∞∫
0

γ cos(τt)
γ2 + τ2

dτ =
π

2
e−γt and

∞∫
0

τ sin(τt)
γ2 + τ2

dτ =
π

2
e−γt.

Therefore,

I1 = eγt
T∫

0

(
1− τ

T

)β 2γ cos(τt) + 2τ sin(τt)
γ2 + τ2

dτ

→ 2eγt
[ ∞∫

0

γ cos(τt)
γ2 + τ2

dτ +

∞∫
0

τ sin(τt)
γ2 + τ2

dτ

]
= 2π

as T →∞. Now we will show that

I2 =

T∫
−T

(
1− |τ |

T

)β

e(γ+iτ)tdτ

∞∫
0

e−(γ+iτ)s (S(s)x−S(t)x) ds→ 0 as T →∞.

We interchange the order of integration and obtain

I2 =

∞∫
0

eγ(t−s) (S(s)x− S(t)x)

T∫
−T

(
1− |τ |

T

)β

eiτ(t−s)dτ ds.

For any ε > 0 we can find δ = δ(ε), 0 < δ < 1 and 0 < δ < t, such that
‖S(s)x− S(t)x‖ < ε for all s ∈ [t− δ, t+ δ] . Now, I2 = J1(T ) + J2(T ) +
J3(T ), where

J1(T ) =

t−δ∫
0

eγ(t−s) (S(s)x− S(t)x) ds

T∫
−T

(
1− |τ |

T

)β

eiτ(t−s)dτ,



α−TIMES INTEGRATED SEMIGROUPS (α ∈ R+) 113

J2(T ) =

t+δ∫
t−δ

eγ(t−s) (S(s)x− S(t)x) ds

T∫
−T

(
1− |τ |

T

)β

eiτ(t−s)dτ

J3(T ) =

∞∫
t+δ

eγ(t−s) (S(s)x− S(t)x) ds

T∫
−T

(
1− |τ |

T

)β

eiτ(t−s)dτ.

It is straightforward to see that

J1(T ) =

t∫
δ

eγσ [S(t− σ)x− S(t)x] 2T

1∫
0

(1− u)β cos(σTu)du dσ,

and

J1(T ) = 2

tT∫
δT

e
γs
T

[
S

(
t− s

T

)
x− S(t)x

] 1∫
0

(1− u)β cos(su)du ds.

Use integration by parts to obtain
∫ 1
0 (1− u)β cos(su)du. We obtain

J1(T ) = 2β

tT∫
δT

e
γs
T
S

(
t− s

T

)
x− S(t)x
s

1∫
0

(1− u)β−1 sin(su)du ds.

Now Lemma 3.3 gives |J1(T )| ≤ LM1

∫ tT
δT

ds
s1+β , for some constants L and

M1. From here it directly follows that J1(T ) → 0 as T →∞. Let us estimate

J2(T ) =

t+δ∫
t−δ

eγ(t−s) (S(s)x− S(t)x) ds

T∫
−T

(
1− |τ |

T

)β

eiτ(t−s)dτ.

Obviously,

J2(T ) =

δ∫
−δ

eγσ [S(t− σ)x− S(t)x]2T

1∫
0

(1− u)β cos(σTu)du dσ,

or J2(T ) = J2(T ) + J2(T ), where

J2(T ) =

δ∫
0

eγσ [S(t− σ)x− S(t)x]2T

1∫
0

(1− u)β cos(σTu)du dσ

J2(T ) =

δ∫
0

e−γσ [S(t+ σ)x− S(t)x]2T

1∫
0

(1− u)β cos(σTu)du dσ.
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Further, we have

J2(T ) = 2

δT∫
0

e
γs
T

[
S

(
t− s

T

)
x− S(t)x

]
ds

1∫
0

(1− u)β cos(su)du

= 2β

δT∫
0

e
γs
T
S

(
t− s

T

)
x− S(t)x
s

ds

1∫
0

(1− u)β−1 sin(su)du

= 2β

1∫
0

e
γs
T
S

(
t− s

T

)
x− S(t)x
s

ds

1∫
0

(1− u)β−1 sin(su)du

+ 2β

δT∫
1

e
γs
T
S

(
t− s

T

)
x− S(t)x
s

ds

1∫
0

(1− u)β−1 sin(su)du

and ∥∥∥∥∥
1∫

0

e
γs
T
S

(
t− s

T

)
x− S(t)x
s

ds

1∫
0

(1− u)β−1 sin(su)du

∥∥∥∥∥
≤

1∫
0

e
γs
T

∥∥S (
t− s

T

)
x− S(t)x

∥∥
s

ds

1∫
0

(1− u)β−1 sin(su)du ≤ε ·K1,

whereK1 is a suitable constant independent of ε. Namely, the last expression
can be bounded above by e

γ
T ε

∫ 1
0 ds

∫ 1
0 (1− u)β−1 udu, while ‖S

(
t− s

T

)
x−

S(t)x‖ ≤ ε and
∣∣∣ sin(su)

s

∣∣∣ ≤ u.

Using Lemma 3.3, we obtain∥∥∥∥∥
δT∫
1

e
γs
T
S

(
t− s

T

)
x− S(t)x
s

ds

1∫
0

(1− u)β−1 sin(su)du

∥∥∥∥∥
≤

δT∫
1

e
γs
T

∥∥S (
t− s

T

)
x− S(t)x

∥∥
s

M1

sβ
ds ≤ ε ·M1 · max

σ∈[0,1]
eγσ

δT∫
1

ds

s1+β
≤ ε ·K2,

where K2 is a constant independent of ε.
Similarly, it can be proved that

∥∥∥J2(T )
∥∥∥ ≤ ε ·K3, where K3 is a constant

independent of ε. Hence, ‖J2(T )‖ ≤ ε·K, where K is a constant independent
of ε.
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Furthermore,

J3(T ) =

∞∫
t+δ

eγ(t−s) (S(s)x− S(t)x) ds

T∫
−T

(
1− |τ |

T

)β

eiτ(t−s)dτ

=

∞∫
δ

e−γσ [S(t+ σ)x− S(t)x] 2Tdσ

1∫
0

(1− u)β cos(σTu)du

= 2

∞∫
δT

e−
γs
T

[
S

(
t+

s

T

)
x− S(t)x

]
ds

1∫
0

(1− u)β cos(su)du

= 2β

∞∫
δT

e−
γs
T
S

(
t+ s

T

)
x− S(t)x
s

ds

1∫
0

(1− u)β−1 sin(su)du.

Then Lemma 3.3 implies

‖J3(T )‖ ≤ 2β

∞∫
δT

e−
γs
T 2Meω0(t+ s

T ) M1

s1+β
ds ≤ SM1

∞∫
δT

ds

s1+β

(for some constants S and M1 ). Now we see that J3(T ) → 0 as T → ∞.
Hence, I2 → 0 as T → ∞ , and the proof is completed. From the proof
of the theorem one can see that the limit is uniform in t on any bounded
interval [a, b] ⊂ [0,∞) . �

Theorem 3.2 and Theorem 3.3 imply

Corollary 3.1. Let (S(t))t≥0 be an α− times integrated, exponentially bo-
unded semigroup on a Banach space X (α ∈ R+) . Then, for every β > 0,
γ > max(ω0, 0) , x ∈ X and t ≥ 0 :

S(t)x =
1

2πi
(C, β)− lim

ω→∞

γ+iω∫
γ−iω

eλt
R(λ,A)x

λα
dλ.
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[9] M. Mijatović, S. Pilipović and F. Vajzović, α− times integrated semigroups (α ∈ R+),
J. Math. Anal. Appl., 210 (1997), 790–803.

(Received: August 23, 2004) Fikret Vajzović
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