AN EXTENSION OF TWO RESULTS OF HARDY

B. E. RHOADES

ABSTRACT. In this paper we extend two results of Hardy, dealing with regular weighted mean matrices, to coregular factorable matrices.

A weighted mean matrix is a lower triangular infinite matrix with nonzero entries $p_k/P_n, 0 \le k \le n$, where $\{p_k\}$ is a nonnegative sequence with $p_0 > 0$, and $P_n := \sum_{k=0}^n p_k$. A factorable matrix is a lower triangular matrix with nonnegative entries $a_n b_k, 0 \le k \le n$. Obviously a weighted mean matrix is a special case of a factorable matrix obtained by setting $b_k = p_k, a_n = 1/P_n$.

An infinite matrix is said to be regular if it is limit-preserving over c, the space of convergent sequences. Necessary and sufficient conditions for a matrix $A = (a_{nk})$ to be regular are the well-known Silverman-Toeplitz conditions:

- $\begin{array}{ll} \text{(i)} & \|A\|:=\sup_n\sum_k |a_{nk}|<\infty,\\ \text{(ii)} & \lim_n a_{nk}=0 \text{ for each }k, \end{array}$
- (iii) $\lim_{k \to \infty} \sum_{k} a_{nk} = 1.$

An infinite matrix A is said to be conservative if $A: c \to c$. The Silverman-Toeplitz conditions for a matrix to be conservative are

- (i') $||A|| < \infty$,
- (ii') α_k exists for each k, where $\alpha_k := \lim_n a_{nk}$,
- (iii') $t := \lim_{n \to \infty} t_n$ exists, where $t_n := \sum_k a_{nk}$.
- A conservative matrix is called coregular if $\chi(A) := t \sum_k \alpha_k \neq 0$.

It is a straightforward exercise to verify that a nonnegative conservative factorable matrix $A = (a_n b_k)$ is coregular if and only if

$$\lim_{n \to \infty} a_n = 0 \quad \text{and} \quad t = \lim_{n \to \infty} a_n B_n \neq 0,$$

where $B_n := \sum_{k=0}^n b_k$. A weighted mean matrix is regular if and only if $\lim P_n = \infty.$

²⁰¹⁰ Mathematics Subject Classification. Primary: 40G99; Secondary: 40C05. Key words and phrases. Factorable matrices, weighted mean matrices.

Given an infinite matrix A and a sequence x, $A_n(x) := \sum_k a_{nk} x_k$. The convergence domain of A, written c_A , is defined by

$$c_A = \{x : \lim_n A_n(x) \text{ exists}\}$$

Theorem 1. Let $A = (a_n b_k)$ be a nonnegative coregular factorable matrix. Then $c_A = c$ if and only if

$$\liminf \frac{b_{n+1}}{B_n} > 0. \tag{1}$$

Proof. Note that, if $a_n = 0$ for an infinite number of values of n, say $\{n_i\}$, then A is not coregular, since then $t_{n_i} = 0$, which contradicts $t \neq 0$.

If $b_k = 0$ for an infinite sequence, say $\{k_j\}$, then, for the sequence x defined by $x_n = 0$ for $n \neq k_j$, $x_{k_j} = 1$, $A_n(x) = 0$ and hence $c_A \neq c$. Thus, if $c_A = c$, then there are only a finite number of values of n for which $a_n = 0$ or $b_n = 0$. On the other hand, if (1) holds, then clearly $b_n = 0$ for only a finite number of values of n. Thus the hypotheses of Theorem 1 ensure that there are only a finite number of values of n for which a_n or b_n is zero.

We now define a new factorable matrix D by

$$c_n = \begin{cases} a_n, & \text{if } a_n \neq 0, \\ 1, & \text{if } a_n = 0, \end{cases} \quad d_n = \begin{cases} b_n, & \text{if } b_n \neq 0, \\ 1, & \text{if } b_n = 0. \end{cases}$$

Since there are only a finite number of values of n for which $a_n = 0, D$ is coregular since A is. Let N denote the largest value of n for which $a_n = 0$. Then, with $K := \{k_1, k_2, \ldots, k_M\}$, where $b_{k_1} = b_{k_2} = \cdots = b_{k_M} = 0$, for n > N,

$$D_n(x) = \sum_{k=0}^n c_n d_k x_k = \sum_{k=0}^n a_n b_k x_k + \sum_{k \in K} a_n b_k x_k$$
$$= A_n(x) + a_n \sum_{k \in K} b_k x_k,$$

which implies that $c_A = c_D$.

Suppose that $\liminf a_{n-1}b_n = 0$. Then there exists a subsequence $\{n_i\}$ of \mathbb{N} such that $\lim_i a_{n_i-1}b_{n_i} = 0$. But

$$a_{n_i-1}b_{n_i} = a_{n_i-1}B_{n_i-1}\frac{b_{n_i}}{B_{n_i-1}},$$

and $\lim_{i} a_{n_i-1} B_{n_i-1} = t \neq 0$, which implies that

$$\liminf \frac{b_{n_i}}{B_{n_i-1}} = 0,$$

contradicting (1). Therefore (1) implies that

$$\liminf a_{n-1}b_n > 0. \tag{2}$$

Now suppose that $\liminf a_n b_n = 0$. Then there exists a subsequence $\{n_j\}$ of \mathbb{N} such that $\lim_{j} a_{n_j} b_{n_j} = 0$. Since

$$a_{n_j}b_{n_j} = a_{n_j}B_{n_j}\frac{b_{n_j}}{B_{n_j}},$$

and $\lim_{j} a_{n_j} B_{n_j} = t \neq 0$, it follows that

$$\lim_{j} \frac{b_{n_j}}{B_{n_j}} = 0.$$

But, assuming that $n_j \notin K$,

$$\frac{B_{n_j}}{b_{n_j}} = \frac{B_{n_j-1} + b_{n_j}}{b_{n_j}} = \frac{B_{n_j-1}}{b_{n_j}} + 1,$$

and hence $\lim_{j} b_{n_j}/B_{n_j} = 0$, again contradicting (1). Therefore (1) also implies that

$$\liminf a_n b_n \neq 0. \tag{3}$$

Since only a finite number of the a_n can be zero, conditions (2) and (3) imply that

$$\liminf c_{n-1}d_n \neq 0 \quad \text{and} \quad \liminf c_n d_n \neq 0. \tag{4}$$

A triangle is a lower triangular matrix with all of the main diagonal entries nonzero. Since D is a factorable triangle, it has a unique two sided inverse D^{-1} and D^{-1} is bidiagonal with entries

$$d_{nn}^{-1} = \frac{1}{c_n d_n}, \quad d_{n,n-1}^{-1} = -\frac{1}{c_{n-1} d_n},$$

and $d_{nk}^{-1} = 0$ otherwise. (See, e.g., Lemma 2.1 of [1].) If $c_A = c$ then $c_D = c$ so that D^{-1} is conservative and the row norm condition implies that (4) must hold. Writing, for sufficiently large n,

$$a_n b_{n+1} = a_n B_n \frac{b_{n+1}}{B_n},$$

we see that (2) implies that (1) must hold by coregularity.

Conversely, if (1) holds, then (4) holds as above, and Theorem 3 of [8] gives the fact that D^{-1} is conservative. Hence $c_D = c$ and so $c_A = c$.

Corollary 1. Let A be a regular weighted mean matrix. Then $c_A = c$ if and only if

$$\liminf \frac{p_n}{P_{n-1}} > 0. \tag{5}$$

Proof. Since a weighted mean matrix is a factorable matrix with $b_n =$ $p_n, a_n = 1/P_n$, condition (1) becomes condition (5). $p_n/P_{n-1} \ge \theta/2$, and $p_n/P_n \ge \theta/(2+\theta)$ for all *n* sufficiently large. Hence $\liminf p_n/P_n > 0$. \Box B. E. RHOADES

Corollary 1 is Theorem 4 of [2].

Historical Note. Corollary 2 was originally proved by Cesáro [3] in 1888, and was rediscovered by Hardy [4] in 1907.

Corollary 2. Let A be a regular weighted mean matrix. Then $c_A = c$ if and only if

$$\liminf \frac{P_{n+1}}{P_n} = 1 + \delta > 1, \quad for \ some \quad \delta > 0.$$
(6)

Proof. We may write

$$\frac{p_{n+1}}{P_n} = \frac{P_{n+1}}{P_n} - 1,$$

which implies that

$$\liminf \frac{p_{n+1}}{P_n} = \liminf \frac{P_{n+1}}{P_n} - 1 = \delta > 0.$$

Thus (6) is equivalent to (5), and the result follows from Corollary 1. \Box

Corollary 3. Let A be a regular weighted mean matrix. Then, if

$$\frac{P_{n+1}}{P_n} \ge 1 + \delta, \quad for \ some \quad \delta > 0, \tag{7}$$

 $c_A = c.$

Proof. The result follows from Corollary 2, since (7) implies (6), with a possibly different δ .

Corollary 3 is Theorem 15 of [5].

Theorem 2. Let A be a regular factorable matrix. If

$$\lim \frac{a_n}{a_{n-1}} = 1,\tag{8}$$

then $x \in c_A$ implies that $x_n = o(1/a_n b_n)$.

Proof. Define

$$u_n = a_n \sum_{k=0}^n b_k x_k$$

But, for sufficiently large n,

$$\frac{u_n}{a_n} - \frac{u_{n-1}}{a_{n-1}} = b_n x_n,$$

which, in turn implies that

$$u_n - \left(\frac{a_n}{a_{n-1}}\right)u_{n-1} = a_n b_n x_n,$$

from which (8) follows.

Corollary 4. Let A be a regular weighted mean matrix. If

$$\lim \frac{P_{n-1}}{P_n} = 1,\tag{9}$$

then $x \in c_A$ implies that $x_n = o(P_n/p_n)$.

Proof. With $a_n = 1/P_n$, (9) is equivalent to (8).

Corollary 4 is Theorem 13 of [5].

Theorem 2 also provides a limitation theorem for Cesáro summability. The Cesáro matrix of order one, C, is a weighted mean matrix with $p_n = 1$ for all n. Thus $a_n = 1/(n + 1)$, so that condition (6) is automatically satisfied. One then obtains $x_n = o(n)$, proving the following result.

Corollary 5. If a sequence $x \in c_C$, then $x_n = o(n)$.

Let $\{\lambda_n\}$ be a sequence satisfying

$$0 \le \lambda_0 < \lambda_1 < \dots < \lambda_n < \dots$$

such that

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$$

For any sequence $\{\mu_n\}$, an H-J generalized Hausdorff matrix is a lower triangular matrix with entries

$$h_{nk} = \begin{cases} \lambda_{k+1} \dots \lambda_n [\mu_k, \dots, \mu_n], & 0 \le k \le n \\ 0, & k > n, \end{cases}$$

where it is understood that $\lambda_{k+1} \dots \lambda_n = 1$ when k = n.

Hausdorff [6] made this definition for $\lambda_0 = 0$, and Jakimovski [7] extended it to the cases in which $\lambda_0 > 0$. If $\lambda_n = n$, then the definition reduces to that of an ordinary Hausdorff matrix. It is therefore reasonable to call such generalized Hausdorff matrices H-J matrices.

An H-J matrix is conservative if and only if the $\{\mu_n\}$ have the representation

$$\mu_n = \int_0^1 t^{\lambda_n} d\chi(t),$$

where $\chi(t)$ is a function of bounded variation over [0,1].

The H-J analogue of the Cesáro matrix of order one has

$$\mu_n = \int_0^1 t^{\lambda_n} dt = \frac{1}{\lambda_n + 1},$$

and the nonzero entries are

$$h_{nk} = \frac{\lambda_{k+1} \dots \lambda_n}{\prod_{i=k}^n (\lambda_i + 1)} = \frac{\lambda_1 \dots \lambda_n}{\prod_{i=0}^n (\lambda_i + 1)} \frac{\prod_{i=0}^{k-1} (\lambda_i + 1)}{\lambda_1 \dots \lambda_k}.$$

99

Thus the matrix is a factorable triangle with

$$a_n = \frac{\lambda_1 \dots \lambda_n}{\prod_{i=0}^n (\lambda_i + 1)}, \quad b_k = \frac{\prod_{i=0}^{k-1} (\lambda_i + 1)}{\lambda_1 \dots \lambda_k}$$

With $u_n := \sum_{k=0}^n h_{nk} x_k$,

$$\frac{u_n}{a_n} - \frac{u_{n-1}}{a_{n-1}} = b_n x_n,$$

i.e.,

or

$$\frac{\prod_{i=0}^{n}(\lambda_{i}+1)}{\lambda_{1}\dots\lambda_{n}}u_{n} - \frac{\prod_{i=0}^{n-1}(\lambda_{i}+1)}{\lambda_{1}\dots\lambda_{n-1}} = \frac{\prod_{i=0}^{n-1}(\lambda_{i}+1)}{\lambda_{1}\dots\lambda_{n}}x_{n},$$
$$\frac{(\lambda_{n}+1)}{\lambda_{n}}u_{n} - u_{n-1} = \frac{x_{n}}{\lambda_{n}},$$

which gives rise to the following result.

Corollary 6. Let H denote the H-J Cesáro matrix of order one. Then $x \in c_H$ implies that $x_n = o(\lambda_n)$.

Corollary 5 can also be proved from Corollary 6 by setting $\lambda_n = n$.

Remark. The author takes this opportunity to thank the referee for the careful reading of the manuscript and for the helpful suggestions that resulted in the present form of Theorem 1.

References

- F. Aydin Akgun and B. E. Rhoades, Factorable generalized Hausdorff matrices, J. Advanced Math. Studies, 3 (1) (2010), 1–8.
- [2] Frank P. Cass and B. E. Rhoades Mercerian theorems via spectral theory, Pacific J. Math., 7 (1) (1977), 63–71.
- [3] E. Cesáro, Atti d. R. Acad. d Lincei Rend, 4 (4) (1888), 452-457.
- [4] G. H. Hardy, On certain oscillating series, Quart. J. Math., 38 (1907), 269–288.
- [5] G. H. Hardy, *Divergent Series*, Clarendon Press, Oxford, 1949.
- [6] F. Hausdorff, Summationsmethoden und Momentfolgen, II, Math. Z., 9 (1921), 280– 299.
- [7] A. Jakimovski, The product of summability methods; new classes of transformations and their properties, II, Note No 4, Contract Number AF61-(052)-187, August, 1959.
- [8] Albert Wilansky and Karl Zeller, The inverse matrix in summability: reversible matrices, J. London Math. Soc., 32 (1957), 397–408.

(Received: February 24, 2012) (Revised: June 11, 2012) Department of Mathematics Indiana University Bloomington, IN 47405-7106 U.S.A. E-mail: rhoades@indiana.edu