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FLOQUET THEORY FOR q-DIFFERENCE EQUATIONS

MARTIN BOHNER AND ROTCHANA CHIEOCHAN

Dedicated to Professor Mustafa Kulenović on the occasion of his 60th birthday

ABSTRACT. In this paper, we introduce ω-periodic functions in quantum cal-
culus and study the first-order linear q-difference vector equation for which its
coefficient matrix function is ω-periodic and regressive. Based on the new defi-
nition of periodic functions, we establish Floquet theory in quantum calculus.

1. INTRODUCTION

Floquet theory plays an important rôle in many applications such as in linear
dynamic systems with periodic coefficient matrix functions. The study of Floquet
theory can be found in Kelley and Peterson [6], Hartman [4], and Cronin [3] for
R, and for Z in Kelley and Peterson [5]. Ahlbrandt and Ridenhour have studied
Floquet theory on periodic time scales [1].

In this paper, we are interested to study Floquet theory for q-difference equa-
tions, namely dynamic equations on the so-called q-time scale, i.e.,

T := qN0 := {qt : t ∈ N0}, where q > 1.

We present a new definition (see Definition 3.1 below) of periodic functions on
the q-time scale and derive some Floquet theory based on the first-order linear
equation, called a Floquet q-difference equation,

x∆ = A(t)x, (1.1)

where

x∆(t) :=
x(qt)− x(t)

(q − 1)t
for t ∈ T,

A is an ω-periodic matrix function defined as in Definition 3.1 below, and A also
is regressive, i.e.,

I + (q − 1)tA(t) is invertible for all t ∈ T,
where I is the identity matrix.
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2. SOME AUXILIARY RESULTS

The following definitions and theorems are useful to prove the results in Sections
3 and 4 below.

Definition 2.1. Let m,n ∈ N0 with m < n, and f : qN0 → R. Then∫ qn

qm
f(t)∆t := (q − 1)

n−1∑
k=m

qkf(qk).

Definition 2.2 (Matrix exponential function). Let t0 ∈ qN0 and A be an n × n
regressive matrix-valued function on qN0 . The unique matrix-valued solution of
the initial value problem

Y ∆ = A(t)Y, Y (t0) = I,

where I denotes the n×n identity matrix, is called the matrix exponential function
(at t0), and it is denoted by eA(·, t0).

For example, if A is an n × n regressive matrix-valued function on qN0 and
s = qm, t = qn with m,n ∈ N0 and m < n, then

eA(t, s) =
∏

τ∈qN0∩[s,t)

[I + (q − 1)τA(τ)]

=
n−1∏
k=m

[I + (q − 1)qkA(qk)],

(2.1)

where the matrix product is from the left to the right.

Theorem 2.3 (See [2, Theorem 5.21]). If A is a matrix-valued function on qN0 ,
then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii) eA(t, s) = e−1

A (s, t);
(iii) eA(t, s)eA(s, r) = eA(t, r).

Theorem 2.4 (Liouville’s formula [2, Theorem 5.28]). Let A be a 2× 2 regressive
matrix-valued function on qN0 . Assume that X is a matrix-valued solution of

X∆ = A(t)X, t ∈ qN0 .

Then X satisfies

detX(t) = etrA+µ detA(t, t0) detX(t0), t ∈ qN0 ,

where trA and detA denote the trace and the determinant of A, respectively, and

µ(t) = (q − 1)t, t ∈ qN0 .
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In the last section, we shall show an example of a Floquet q-difference equation,
whose coefficient matrix function is defined in terms of trigonometric functions on
qN0 .

Definition 2.5 (Trigonometric functions). Let p be a function defined on qN0 and
suppose 1+(q−1)tp(t) ̸= 0 for all t ∈ qN0 . We define the trigonometric functions
cosp and sinp by

cosp :=
eip + e−ip

2
and sinp :=

eip − e−ip

2i
.

In particular, we have Euler’s formula given by

eip(t, t0) = cosp(t, t0) + i sinp(t, t0),

and the identity [sinp(t, t0)]
2 + [cosp(t, t0)]

2 = 1 need not hold.

3. PERIODIC FUNCTIONS

Let T be a periodic time scale with period T > 0, i.e., t + T ∈ T whenever
t ∈ T. Then a function f : T → R is called periodic if f(t + T ) = f(t) for all
t ∈ T. This definition applies for example to the prominent examples T = R and
T = Z. However, T = qN0 is not a periodic time scale. Thus we shall introduce
the definition of ω-periodic functions on qN0 as follows.

Definition 3.1. Let ω ∈ N. A function f : qN0 → R is called ω-periodic if

f(t) = qωf(qωt) for all t ∈ qN0 .

A first question concerns the geometrical meaning of ω-periodic functions on
qN0 . The following theorem and an example below address this issue.

Theorem 3.2. Let f be an ω-periodic function on qN0 and define

c :=

∫ qω

1
f(t)∆t.

Then ∫ qωt

t
f(s)∆s = c for all t ∈ qN0 .

Before we prove Theorem 3.2, let us see some examples.

Example 3.3. Let c ∈ R. We define a function f : 2N0 → R by

f(t) :=
c

t
for all t ∈ 2N0 .

Then
2f(2t) = 2

c

2t
=

c

t
= f(t) for all t ∈ 2N0
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so, by Definition 3.1, f is 1-periodic. From Definition 2.1, we have∫ 2

1
f(t)∆t = f(1) = c

and ∫ 2t

t
f(s)∆s = 2nf(2n) = t

c

t
= c, where t = 2n.

Geometrically, Figure 3.1 shows that the areas under the graph of the function f
on the intervals [2n, 2n+1], n ∈ {0, 1, 2, 3, 4}, are all equal to the same constant c.

FIGURE 3.1. The constant area of the rectangles corresponding
to the 1-periodic function f on the intervals [2n, 2n+1], n ∈
{0, 1, 2, 3, 4}.

Example 3.4. Let q > 1 and define f : qN0 → R by

f(t) =
1

t
for all t ∈ qN0 .

Then

qωf(qωt) = qω
1

qωt
=

1

t
= f(t) for all t ∈ qN0

so, by Definition 3.1, f is ω-periodic for any ω ∈ N. From Definition 2.1, we have
that∫ qωt

t
f(s)∆s = (q − 1)

n+ω−1∑
k=n

qkf(qk) = (q − 1)

n+ω−1∑
k=n

qk
c

qk
= (q − 1)ωc

is independent of t = qn ∈ qN0 .
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Example 3.5. Let q > 1 and define f : qN0 → R by

f(t) =


1
t if logq t is odd,

2
t if logq t is even,

where logq is the logarithm to base q, in particular, logq(q
n) = n for any n ∈ N0.

Then

q2f(q2t) = q2


1
q2t

if logq(q
2t) is odd,

2
q2t

if logq(q
2t) is even

=


1
t if logq t is odd,

2
t if logq t is even

= f(t),

so, by Definition 3.1, f is 2-periodic. However, since

qf(q) = q
2

q
= 2 ̸= 1 = f(1),

f is not 1-periodic.

Proof of Theorem 3.2. We use the principle of mathematical induction to prove
that ∫ qn+ω

qn
f(s)∆s = c (3.1)

holds for all n ∈ N0. From the assumption, we see that (3.1) holds for n = 0.
Now assume that (3.1) holds for some n ∈ N0. Using Definition 2.1, Definition
3.1, again Definition 2.1, and (3.1), we obtain∫ qn+1+ω

qn+1

f(t)∆t = (q − 1)

n+ω∑
k=n+1

qkf(qk)

= (q − 1)

{
n+ω−1∑
k=n+1

qkf(qk) + qn+ωf(qn+ω)

}

= (q − 1)

{
n+ω−1∑
k=n+1

qkf(qk) + qnqωf(qωqn)

}

= (q − 1)

{
n+ω−1∑
k=n+1

qkf(qk) + qnf(qn)

}
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= (q − 1)
n+ω−1∑
k=n

qkf(qk)

=

∫ qn+ω

qn
f(t)∆t

= c.

Hence (3.1) holds with n replaced by n+ 1 and the proof is complete. �
Lemma 3.6. If B is an ω-periodic and regressive matrix-valued function on qN0 ,
then

eB(t, s) = eB(q
ωt, qωs) for all t, s ∈ qN0 .

Proof. Suppose s = qm and t = qn for some m,n ∈ N0 with m < n. Using (2.1),
Definition 3.1, and again (2.1), we obtain

eB(q
ωt, qωs) = eB(q

ω+n, qω+m)

=
ω+n−1∏
k=ω+m

[
I + (q − 1)qkB(qk)

]

=

n−1∏
k=m

[
I + (q − 1)qk+ωB(qk+ω)

]
=

n−1∏
k=m

[
I + (q − 1)qkqωB(qωqk)

]
=

n−1∏
k=m

[
I + (q − 1)qkB(qk)

]
= eB(t, s).

The proof is complete. �
Theorem 3.7. Let t0 ∈ qN0 and ω ∈ N. If C is a nonsingular k × k matrix
constant, then there exists an ω-periodic regressive matrix-valued function B on
qN0 such that

eB(q
ωt0, t0) = C.

Proof. Let µi be the eigenvalues of C, 1 ≤ i ≤ k. For p ∈ {0, 1, 2, . . . , ω − 2},
define

Rp :=


J1 0 . . . 0

0 J2
. . .

...
...

. . . . . . 0
0 . . . 0 Jn

 ,
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where either Ji is the 1× 1 matrix Ji = µi or

Ji =



µi 1 0 . . . 0

0 µi 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . µi 1

0 . . . 0 0 µi

 ,

1 ≤ i ≤ k, and define

Rω−1 :=
1

(q − 1)qω−1t0

{
ω−2∏
k=0

[
I + (q − 1)qkt0Rk

]−1
C − I

}
,

where I is the identity matrix and
∏ω−2

k=0

[
I + (q − 1)qkt0Rk

]−1 is the product
starting from the right to left. This gives

ω−1∏
k=0

[
I + (q − 1)qkt0Rk

]
= C,

where
∏ω−1

k=0

[
I + (q − 1)qkt0Rk

]
is the product starting from the left to right.

Moreover, Rp are regressive for all p ∈ {0, 1, 2, . . . , ω − 1}. We define

B(qωm+jt0) :=
Rj

qωm
for all j ∈ {0, 1, 2, . . . , ω − 1} and all m ∈ N0.

Therefore B is ω-periodic and regressive on qN0 and

eB(q
ωt0, t0) =

ω−1∏
k=0

[
I + (q − 1)qkt0B(qkt0)

]
= C,

where
∏ω−1

k=0

[
I + (q − 1)qkt0B(qkt0)

]
is the product starting from the left to

right. �

4. FLOQUET THEORY

In this section, we consider the Floquet q-difference equation (1.1), where A is
a regressive and ω-periodic matrix-valued function.

Lemma 4.1. Let t0 ∈ qN0 and suppose x is a solution of the Floquet q-difference
equation (1.1) satisfying the boundary condition

x(t0) = qωx(qωt0).

Then x is ω-periodic.
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Proof. Define a function f on qN0 by

f(t) := qωx(qωt)− x(t) for all t ∈ qN0 .

Then f(t0) = 0 and

f∆(t) =
f(qt)− f(t)

(q − 1)t

=
qωx(qωqt)− x(qt)− qωx(qωt) + x(t)

(q − 1)t

= qωqω
x(qqωt)− x(qωt)

(q − 1)qωt
− x(qt)− x(t)

(q − 1)t

= qωqωx∆(qωt)− x∆(t)

= qωqωA(qωt)x(qωt)−A(t)x(t)

= A(t) [qωx(qωt)− x(t)]

= A(t)f(t).

By unique solvability of the initial value problem f∆ = A(t)f , f(t0) = 0, we
conclude f(t) = 0 for all t ∈ qN0 . By Definition 3.1, x is ω-periodic. �

As usual, we call a matrix-valued function Φ a fundamental matrix of the Flo-
quet q-difference equation (1.1) provided it solves (1.1) such that Φ(t) is nonsingu-
lar for all t ∈ qN0 . The following results gives a representation for any fundamental
matrix of the Floquet q-difference equation (1.1).

Theorem 4.2. Suppose Φ is a fundamental matrix for the Floquet q-difference
equation (1.1). Define the matrix-valued function Ψ by

Ψ(t) := qωΦ(qωt), t ∈ qN0 .

Then Ψ is also a fundamental matrix for (1.1). Furthermore, there exist an ω-
periodic and regressive matrix-valued function B and an ω-periodic matrix-valued
function P such that

Φ(t) = P (t)eB(t, t0) for all t ∈ qN0 .

Proof. Assume Φ is a fundamental matrix for (1.1) and define Ψ as in the statement
of the theorem. Then

Ψ∆(t) =
Ψ(qt)−Ψ(t)

(q − 1)t

=
qωΦ(qωqt)− qωΦ(qωt

(q − 1)t

= qωqω
Φ(qqωt)− Φ(qωt)

(q − 1)qωt
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= qωqωΦ∆(qωt)

= qωqωA(qωt)Φ(qωt)

= qωA(t)Φ(qωt)

= A(t)Ψ(t).

Since detΨ(t) ̸= 0 for all t ∈ qN0 , Ψ is a fundamental matrix for (1.1). Further-
more, define now the nonsingular constant matrix C by

C := Φ−1(t0)Ψ(t0).

The function D defined by D(t) = Ψ(t) − Φ(t)C, t ∈ qN0 , satisfies D(t0) = 0
and

D∆(t) = Ψ∆(t)− Φ∆(t)C = A(t)Ψ(t)−A(t)Φ(t)C = A(t)D(t),

and thus, by unique solvability of this initial value problem, we conclude

qωΦ(qωt) = Ψ(t) = Φ(t)C for all t ∈ qN0 . (4.1)

By Theorem 3.7, there exists an ω-periodic and regressive matrix-valued function
B such that

eB(q
ωt0, t0) = C. (4.2)

Now define the matrix-valued function P by

P (t) := Φ(t)e−1
B (t, t0), t ∈ qN0 .

Obviously, P is a nonsingular matrix-valued function on qN0 . Using (4.1), Theo-
rem 2.3 (i), (ii), (4.2), and Lemma 3.6, we obtain

qωP (qωt) = qωΦ(qωt)e−1
B (qωt, t0)

= Φ(t)CeB(t0, q
ωt)

= Φ(t)CeB(t0, q
ωt0)eB(q

ωt0, q
ωt)

= Φ(t)eB(t0, t)

= Φ(t)e−1
B (t, t0)

= P (t)

for all t ∈ qN0 , i.e., P is ω-periodic. �

Theorem 4.3. Suppose Φ, P , and B are as in Theorem 4.2. Then x solves the
Floquet q-difference equation (1.1) if and only if y given by y(t) = P−1(t)x(t),
t ∈ qN0 , solves y∆ = B(t)y.

Proof. Assume x solves (1.1). Then, as can be seen again by unique solvability of
initial value problems as in the proof of Theorem 4.2, we have

x(t) = Φ(t)x0 for all t ∈ qN0 , where x0 := Φ−1(t0)x(t0).
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Define y by y(t) = P−1(t)x(t), t ∈ qN0 . Then

y(t) = P−1(t)Φ(t)x0 = P−1(t)P (t)eB(t, t0)x0 = eB(t, t0)x0,

which solves y∆ = B(t)y. Conversely, assume y solves y∆ = B(t)y and define x
by x(t) = P (t)y(t), t ∈ qN0 . Again by unique solvability of initial value problems,
we have

y(t) = eB(t, t0)y0 for all t ∈ qN0 , where y0 := eB(t0, t)P (t0)y(t0).

It follows that

x(t) = P (t)y(t) = P (t)eB(t, t0)y0 = Φ(t)y0,

which solves (1.1). �
Definition 4.4. Let Φ be a fundamental matrix for the Floquet q-difference equa-
tion (1.1). The eigenvalues of qωΦ−1(1)Φ(qω) are called the Floquet multipliers
of the Floquet q-difference equation (1.1).

Remark 4.5. Since fundamental matrices for the Floquet q-difference equation
(1.1) are not unique, we shall show that the Floquet multipliers are well defined.
Let Φ and Ψ be any fundamental matrices for (1.1) and let

C := qωΦ−1(1)Φ(qω) and D := qωΨ−1(1)Ψ(qω).

We show that C and D have the same eigenvalues. Since Φ and Ψ are funda-
mental matrices of (1.1), we see as in the proof of Theorem 4.2 that there exists a
nonsingular constant matrix M such that

Ψ(t) = Φ(t)M for all t ∈ qN0 .

It follows that

D = qωΨ−1(1)Ψ(qω) = qωM−1Φ−1(1)Φ(qω)M = M−1CM.

Therefore C and D are similar matrices, and thus they have the same eigenvalues.
Hence, Floquet multipliers are well defined.

Remark 4.6. Note also that the proof of Theorem 4.2 shows that the matrix-valued
function

qωΦ−1(t)Φ(qωt) = Φ−1(t)Ψ(t) ≡ Φ−1(1)Ψ(1) = qwΦ−1(1)Φ(qω)

does not depend on t ∈ qN0 , and therefore Floquet multipliers of the Floquet q-
difference equation (1.1) are also equal to the eigenvalues of qωΦ−1(t)Φ(qωt),
where t ∈ qN0 is arbitrary.

Theorem 4.7. The number µ0 is a Floquet multiplier of the Floquet q-difference
equation (1.1) if and only if there exists a nontrivial solution x of (1.1) such that

qωx(qωt) = µ0x(t) for all t ∈ qN0 .
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Proof. Assume µ0 is a Floquet multiplier of (1.1). Let t ∈ qN0 . By Remark 4.6,
µ0 is an eigenvalue of C := qωΦ−1(t)Φ(qωt), where Φ is a fundamental matrix of
(1.1). Let x0 be an eigenvector corresponding to the eigenvalue µ0, i.e., we have
Cx0 = µ0x0. Define x by x(t) = Φ(t)x0 for all t ∈ qN0 . Then x is a nontrivial
solution of (1.1) and

qωx(qωt) = qωΦ(qωt)x0 = Φ(t)Cx0 = Φ(t)µ0x0 = µ0x(t).

Conversely, assume that there exists a nontrivial solution x of (1.1) such that
qωx(qωt) = µ0x(t) for all t ∈ qN0 . Let Ψ be a fundamental matrix of (1.1). Then
x(t) = Ψ(t)y0 for all t ∈ qN0 and some nonzero constant vector y0. Furthermore,
qωΨ(qωt) is a fundamental matrix of (1.1). Hence

qωx(qωt) = µ0x(t) and qωΨ(qωt)y0 = µ0Ψ(t)y0.

Since qωΨ(qωt) = Ψ(t)D, where D := qωΨ−1(1)Ψ(qω) and Ψ(t)Dy0 = Ψ(t)
µ0y0, it follows that Dy0 = µ0y0, and hence µ0 is an eigenvalue of D. �
Remark 4.8. By Theorem 4.7, the Floquet q-difference equation (1.1) has an ω-
periodic solution if and only if µ0 = 1 is a Floquet multiplier.

5. APPLICATION AND AN EXAMPLE

Example 5.1. Let p be the 2-periodic function given in Example 3.5 and note that
this p is regressive on qN0 . Define

A(t) :=

(
0 1

t cosp(q
2t, t)

1
t sinp(q

2t, t) 0

)
for all t ∈ qN0 . (5.1)

We apply Lemma 3.6 to show that the coefficient matrix-valued function A is 2-
periodic:

q2A(q2t) = q2

 0 1
q2t

cosp(q
4t, q2t)

1
q2t

sinp(q
4t, q2t) 0



=

 0
eip(q

4t,q2t)+e−ip(q
4t,q2t)

2t

eip(q
4t,q2t)−e−ip(q

4t,q2t)
2ti 0



=

 0 1
t cosp(q

2t, t)

1
t sinp(q

2t, t) 0


= A(t).
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The solution of the Floquet q-difference equation x∆ = A(t)x, where A is
defined as in (5.1), satisfying the initial condition x(1) = x0, is x(t) = eA(t, 1)x0,
t ∈ qN0 . If µ1 and µ2 are eigenvalues corresponding to the constant matrix

C := q2e−1
A (1, 1)eA(q

2, 1) = q2eA(q
2, 1),

then by applying Liouville’s formula (Theorem 2.4), we get

µ1µ2 = detC = det q2eA(q
2, 1) = q4 det eA(q

2, 1)

= q4etrA+µdetA(q
2, 1) det eA(1, 1)

= q4ef (q
2, 1),

where f : qN0 → R is defined by

f(t) =
(1− q) sinp(q

2t, t) cosp(q
2t, t)

t
for all t ∈ qN0 .
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